Python聚类算法之凝聚层次聚类实例分析

yipeiwu_com5年前Python基础

本文实例讲述了Python聚类算法之凝聚层次聚类。分享给大家供大家参考,具体如下:

凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并。对于这里的“最接近”,有下面三种定义。我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行:

单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离。
全链(MAX):定义簇的邻近度为不同两个簇的两个最远的点之间的距离。
组平均:定义簇的邻近度为取自两个不同簇的所有点对邻近度的平均值。

# scoding=utf-8
# Agglomerative Hierarchical Clustering(AHC)
import pylab as pl
from operator import itemgetter
from collections import OrderedDict,Counter
points = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")]
# 初始时每个点指派为单独一簇
groups = [idx for idx in range(len(points))]
# 计算每个点对之间的距离
disP2P = {}
for idx1,point1 in enumerate(points):
  for idx2,point2 in enumerate(points):
    if (idx1 < idx2):
      distance = pow(abs(point1[0]-point2[0]),2) + pow(abs(point1[1]-point2[1]),2)
      disP2P[str(idx1)+"#"+str(idx2)] = distance
# 按距离降序将各个点对排序
disP2P = OrderedDict(sorted(disP2P.iteritems(), key=itemgetter(1), reverse=True))
# 当前有的簇个数
groupNum = len(groups)
# 过分合并会带入噪音点的影响,当簇数减为finalGroupNum时,停止合并
finalGroupNum = int(groupNum*0.1)
while groupNum > finalGroupNum:
  # 选取下一个距离最近的点对
  twopoins,distance = disP2P.popitem()
  pointA = int(twopoins.split('#')[0])
  pointB = int(twopoins.split('#')[1])
  pointAGroup = groups[pointA]
  pointBGroup = groups[pointB]
  # 当前距离最近两点若不在同一簇中,将点B所在的簇中的所有点合并到点A所在的簇中,此时当前簇数减1
  if(pointAGroup != pointBGroup):
    for idx in range(len(groups)):
      if groups[idx] == pointBGroup:
        groups[idx] = pointAGroup
    groupNum -= 1
# 选取规模最大的3个簇,其他簇归为噪音点
wantGroupNum = 3
finalGroup = Counter(groups).most_common(wantGroupNum)
finalGroup = [onecount[0] for onecount in finalGroup]
dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup]
# 打印规模最大的3个簇中的点
group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]]
group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]]
group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]]
pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')
pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')
pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')  
# 打印噪音点,黑色
pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok')  
pl.show()

运行效果截图如下:

希望本文所述对大家Python程序设计有所帮助。

相关文章

python实现最长公共子序列

python实现最长公共子序列

最长公共子序列python实现,最长公共子序列是动态规划基本题目,下面按照动态规划基本步骤解出来。 1.找出最优解的性质,并刻划其结构特征 序列a共有m个元素,序列b共有n个元素,如果a...

python getopt模块使用实例解析

这篇文章主要介绍了python getopt模块使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 官方介绍地址: ...

python实现Adapter模式实例代码

python实现Adapter模式实例代码

本文研究的主要是python实现Adapter模式的相关内容,具体实现代码如下。 Adapter模式有两种实现方式一种是类方式。 #理解 #就是电源适配器的原理吧,将本来不兼容的接...

python gdal安装与简单使用

python gdal安装与简单使用

gdal安装 方式一:在网址 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载对应python版本的whl文件,在命令行中pip instal...

Django ORM 聚合查询和分组查询实现详解

Django ORM 聚合查询和分组查询实现详解

models.py: from django.db import models # 出版社 class Publisher(models.Model): id = models...