Pythont特殊语法filter,map,reduce,apply使用方法

yipeiwu_com6年前Python基础

(1)lambda

lambda是Python中一个很有用的语法,它允许你快速定义单行最小函数。类似于C语言中的宏,可以用在任何需要函数的地方。

基本语法如下:

函数名 = lambda args1,args2,...,argsn : expression

例如:

add = lambda x,y : x + y
print add(1,2)

(2)filter

filter函数相当于一个过滤器,函数原型为:filter(function,sequence),表示对sequence序列中的每一个元素依次执行function,这里function是一个bool函数,举例说明:

sequence = [1,2,3,4,5,6,7,8,9,10]
fun = lambda x : x % 2 == 0
seq = filter(fun,sequence)
print seq

以下代码就是表示筛选出sequence中的所有偶数。

filter函数原型大致如下:

def filter(fun,seq):
    filter_seq = []
    for item in seq:
        if fun(item):
            filter_seq.append(item)
    return filter_seq

(3)map

map的基本形式为:map(function,sequence),是将function这个函数作用于sequence序列,然后返回一个最终结果序列。比如:

seq = [1,2,3,4,5,6]
fun = lambda x : x << 2

print map(fun,seq)

map的函数源代码大致如下:

def map(fun,seq):
    mapped_seq = []
    for item in seq:
        mapped_seq.append(fun(item))
    return mapped_seq

(4)reduce

reduce函数的形式为:reduce(function,sequence,initVal),function表示一个二元函数,sequence表示要处理的序列,而initVal表示处理的初始值。比如:

seq = [1,2,3,4,5,6,7,8,9,10]
fun = lambda x,y: x + y

print reduce(fun,seq,0)

表示从初始值0开始对序列seq中的每一个元素累加,所以得到结果是55

reduce函数的源代码大致如下:

def reduce(fun,seq,initVal = None):
    Lseq = list(seq)
    if initVal is None:
        res = Lseq.pop(0)
    else:
        res = initVal
    for item in Lseq:
        res = fun(seq,item)
    return res

(5)apply

apply是用来间接地代替某个函数,比如:

def say(a,b):
    print a,b

apply(say,(234,'Hello World!'))

相关文章

对pandas的层次索引与取值的新方法详解

对pandas的层次索引与取值的新方法详解

1、层次索引 1.1 定义 在某一个方向拥有多个(两个及两个以上)索引级别,就叫做层次索引。 通过层次化索引,pandas能够以较低维度形式处理高纬度的数据 通过层次化索引,可以按照层次...

Python中的Numpy入门教程

1、Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示...

Pyinstaller打包.py生成.exe的方法和报错总结

Pyinstaller 打包.py生成.exe的方法和报错总结 简介 有时候自己写了个python脚本觉得挺好用想要分享给小伙伴,但是每次都要帮他们的电脑装个python环境。虽然说装一...

pymysql的简单封装代码实例

这篇文章主要介绍了pymysql的简单封装代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 #coding=utf-8 #...

Django实现全文检索的方法(支持中文)

PS: 我的检索是在文章模块下 forum/article 第一步:先安装需要的包: pip install django-haystack pip install whoosh p...