Python实现计算最小编辑距离

yipeiwu_com6年前Python基础

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

相关文章

pyenv命令管理多个Python版本

从接触Python以来,一直都是采用 virtualenv 和 virtualenvwrapper 来管理不同项目的依赖环境,通过 workon 、 mkvirtualenv 等命令进行...

Python单元测试与测试用例简析

本文实例讲述了Python单元测试与测试用例。分享给大家供大家参考,具体如下: 单元测试与测试用例 简介 测试用例是一组单元测试,这些单元测试一起核实函数在各种情形下的行为都符合要求 要...

python中根据字符串调用函数的实现方法

在python中可以根据字符串来调用函数: 1、使用getattr从字符串来调用函数 在多进程中,可能传递过来的是一个字符串,那么我怎么来调用一个已经存在的函数呢,主要就是使用到geta...

Python时间模块datetime、time、calendar的使用方法

本文简单总结了一下Python处理时间和日期方面的模块,主要就是datetime、time、calendar三个模块的使用,希望这篇文章对于学习Python的朋友们有所帮助。 首先就是模...

更改Python命令行交互提示符的方法

一、定制Python的交互提示符 Python的默认交互提示符为“>>>”,但它是可以定制的。 Python启动后,先寻找PYTHONSTARTUP环境变量,然后执行此...