Python实现计算最小编辑距离

yipeiwu_com5年前Python基础

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

相关文章

Pycharm 2020年最新激活码(亲测有效)

PyCharm 具备一般 IDE 的功能,比如,调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制…另外,PyCharm 还提供了一些很好的功能用于 Django...

Win系统PyQt5安装和使用教程

Win系统PyQt5安装和使用教程

安装PyQt5: 安装流程如下: 1.PyQt5下载界面中提供了win32,win64,linux,macos等系统的下载版本,这里我选择的是PyQt5-5.10.1-5.10.1-cp...

python中图像通道分离与合并实例

我就废话不多说了,直接上代码吧! import cv2 img = cv2.imread("1.jpg") b, g, r = cv2.split(img)  #分离函...

用Python抢火车票的简单小程序实现解析

利用Python制作自动抢火车票小程序,过年再也不要担心没票了! 前言 每次过年很多人都会因为抢不到火车票而回不了家,所以小编利用Python写了一个自动抢火车票的工具,希望大家能抢到...

Python高级特性切片(Slice)操作详解

切片操作首先支持下标索引,通过[ N:M :P ]操作 索引正向从0开始,逆向从-1开始 N:切片开始位置 M:切片结束位置(不包含) P:指定切片步长,为正数表示按照指定步长正向切片,...