Python实现计算最小编辑距离

yipeiwu_com6年前Python基础

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

相关文章

Python使用matplotlib实现基础绘图功能示例

Python使用matplotlib实现基础绘图功能示例

本文实例讲述了Python使用matplotlib实现基础绘图功能。分享给大家供大家参考,具体如下: 一个简单的例子 # -*- coding:utf-8 -*- #!python3...

Python使用scrapy采集时伪装成HTTP/1.1的方法

本文实例讲述了Python使用scrapy采集时伪装成HTTP/1.1的方法。分享给大家供大家参考。具体如下: 添加下面的代码到 settings.py 文件 复制代码 代码如下:DOW...

浅谈python的深浅拷贝以及fromkeys的用法

浅谈python的深浅拷贝以及fromkeys的用法

1.join()的用法:使用前面的字符串.对后面的列表进行拼接,拼接结果是一个字符串 # lst = ["alex","dsb",'wusir','xsb'] # s = "".jo...

Python入门教程1. 基本运算【四则运算、变量、math模块等】 原创

在熟悉了Python的基本安装与环境配置之后,我们来看看Python的基本运算操作。 1. 基本运算 >>>6 # 这里的‘#'是注释符号,不参与运算 6 >...

videocapture库制作python视频高速传输程序

videocapture库制作python视频高速传输程序

1,首先是视频数据[摄像头图像]的采集,通常可以使用vfw在vc或者vb下实现,这个库我用的不好,所以一直不怎么会用.现在我们用到的是python的videocapture库,这个库用起...