Python实现计算最小编辑距离

yipeiwu_com5年前Python基础

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

相关文章

python读写ini文件示例(python读写文件)

很类似java的properties文件xml文件复制代码 代码如下:db_config.ini[baseconf]host=127.0.0.1port=3306user=rootpas...

Python3.遍历某文件夹提取特定文件名的实例

批量处理文件时,常需要先遍历某个路径提取特定条件的文件名。这篇写一个暴力遍历但很简洁的方法,真的非常简洁但是非常暴力。 例子目标是:获得存放遥感数据的文件夹下文件夹名以“_BAD”结尾的...

pycharm使用matplotlib.pyplot不显示图形的解决方法

如下案例,可以正常保存图像,但是plt.show()不能正常显示图像,这里是使用pandas模块读取csv文件: # coding=utf-8 import pandas as pd...

简述Python中的面向对象编程的概念

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。 面向过程的程...

Python的高阶函数用法实例分析

本文实例讲述了Python的高阶函数用法。分享给大家供大家参考,具体如下: 高阶函数 1.MapReduce MapReduce主要应用于分布式中。 大数据实际上是在15年下半年开始火起...