Python实现计算最小编辑距离

yipeiwu_com5年前Python基础

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):

 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:

 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

相关文章

对Python random模块打乱数组顺序的实例讲解

对Python random模块打乱数组顺序的实例讲解

在我们使用一些数据的过程中,我们想要打乱数组内数据的顺序但不改变数据本身,可以通过改变索引值来实现,也就是将索引值重新随机排列,然后生成新的数组。功能主要由python中random模块...

解决新django中的path不能使用正则表达式的问题

新版的path 虽然 取代了 之前的url,但是在写路由的时候不能在路由中直接写正则表达式,不然会找不到页面。 解决方法 使用re_path from django.urls imp...

Python实现的选择排序算法原理与用法实例分析

Python实现的选择排序算法原理与用法实例分析

本文实例讲述了Python实现的选择排序算法。分享给大家供大家参考,具体如下: 选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中...

Python使用Phantomjs截屏网页的方法

实例如下所示: #!/usr/bin/python # -*- coding:utf8 -*- from selenium import webdriver import os d...

Python从入门到精通之环境搭建教程图解

Python从入门到精通之环境搭建教程图解

本章内容: 一、下载python安装包 下载地址:https://www.python.org/downloads/ 二、选择适合自己系统的文件,进行下载 Windows环境安装(Wi...