Python使用gensim计算文档相似性

yipeiwu_com6年前Python基础

pre_file.py

#-*-coding:utf-8-*-
import MySQLdb
import MySQLdb as mdb
import os,sys,string
import jieba
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
#连接数据库
try:
  conn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
except Exception,e:
  print e
  sys.exit()
#获取cursor对象操作数据库
cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标
#获取内容
sql='SELECT link,content FROM test1.spider;'
cursor.execute(sql)   #execute()方法,将字符串当命令执行
data=cursor.fetchall()#fetchall()接收全部返回结果行
f=codecs.open('C:\Users\kk\Desktop\hello-result1.txt','w','utf-8')
 
for row in data:    #row接收结果行的每行数据
  seg='/'.join(list(jieba.cut(row['content'],cut_all='False')))
  f.write(row['link']+' '+seg+'\r\n')
f.close()
 
cursor.close()
      #提交事务,在插入数据时必须

jiansuo.py

#-*-coding:utf-8-*-
import sys
import string
import MySQLdb
import MySQLdb as mdb
import gensim
from gensim import corpora,models,similarities
from gensim.similarities import MatrixSimilarity
import logging
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
 
con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8')
with con:
  cur=con.cursor()
  cur.execute('SELECT * FROM cutresult_copy')
  rows=cur.fetchall()
  class MyCorpus(object):
    def __iter__(self):
      for row in rows:
        yield str(row[1]).split('/')
#开启日志
logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO)
Corp=MyCorpus()
#将网页文档转化为tf-idf
dictionary=corpora.Dictionary(Corp)
corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型
#print corpus
tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型
corpus_tfidf=tfidf[corpus]#计算得出tf-idf值
#for doc in corpus_tfidf:
  #print doc
###
'''
q_file=open('C:\Users\kk\Desktop\q.txt','r')
query=q_file.readline()
q_file.close()
vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型
vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值
#for t in vec_tfidf:
 # print t
'''
###
query=raw_input('Enter your query:')
vec_bow=dictionary.doc2bow(query.split())
vec_tfidf=tfidf[vec_bow]
index=similarities.MatrixSimilarity(corpus_tfidf)
sims=index[vec_tfidf]
similarity=list(sims)
print sorted(similarity,reverse=True)

encodings.xml

<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="Encoding">
  <file url="PROJECT" charset="UTF-8" />
 </component>
</project>

misc.xml

<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectLevelVcsManager" settingsEditedManually="false">
  <OptionsSetting value="true" id="Add" />
  <OptionsSetting value="true" id="Remove" />
  <OptionsSetting value="true" id="Checkout" />
  <OptionsSetting value="true" id="Update" />
  <OptionsSetting value="true" id="Status" />
  <OptionsSetting value="true" id="Edit" />
  <ConfirmationsSetting value="0" id="Add" />
  <ConfirmationsSetting value="0" id="Remove" />
 </component>
 <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.11 (C:\Python27\python.exe)" project-jdk-type="Python SDK" />
</project>

modules.xml

<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
 <component name="ProjectModuleManager">
  <modules>
   <module fileurl="file://$PROJECT_DIR$/.idea/爬虫练习代码.iml" filepath="$PROJECT_DIR$/.idea/爬虫练习代码.iml" />
  </modules>
 </component>
</project>

相关文章

Python获取基金网站网页内容、使用BeautifulSoup库分析html操作示例

本文实例讲述了Python获取基金网站网页内容、使用BeautifulSoup库分析html操作。分享给大家供大家参考,具体如下: 利用 urllib包 获取网页内容 #引入包 fr...

PyQt5实现下载进度条效果

PyQt5实现下载进度条效果

起因是因为公司要开发一款自动登录某网站的助手工具提供给客户使用,要使用到selenium,所以选择了pyqt5的方式来开发这个C/S架构的客户端 在过程中要用到自动更新的功能,所以自己写...

Windows中安装使用Virtualenv来创建独立Python环境

Windows中安装使用Virtualenv来创建独立Python环境

0、什么时候会用到virtualenv? 假设系统中的两个应用,其中A应用对库LibFoo的版本要求为1,而B应用对同一个库LibFoo的版本要求为2,两个应用对同一个库的要求想冲突了,...

Python+Opencv识别两张相似图片

Python+Opencv识别两张相似图片

在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不...

python3实现名片管理系统

基于python3基础课程,编写名片管理系统训练,有利于熟悉python基础代码的使用。 cards_main.py #! /usr/bin/python3 import card...