使用Python判断质数(素数)的简单方法讲解

yipeiwu_com6年前Python基础

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。 前几天偶尔的有朋友问python怎么判断素数的方法,走网上查了查,总结了python脚本判断一个数是否为素数的几种方法:

1.运用python的数学函数 

import math 

def isPrime(n): 
  if n <= 1: 
  return False 
  for i in range(2, int(math.sqrt(n)) + 1): 
  if n % i == 0: 
    return False 
  return True 

2.单行程序扫描素数 

from math import sqrt 
N = 100 
[ p for p in  range(2, N) if 0 not in [ p% d for d in range(2, int(sqrt(p))+1)] ] 

运用python的itertools模块 

from itertools import count 
def isPrime(n): www.jb51.net
  if n <= 1: 
    return False 
  for i in count(2): 
    if i * i > n: 
      return True 
    if n % i == 0: 
      return False 

3.不使用模块的两种方法 
方法1:

def isPrime(n): 
  if n <= 1: 
    return False 
  i = 2 
  while i*i <= n: 
    if n % i == 0: 
      return False 
    i += 1 
  return True 

方法2:

def isPrime(n): 
  if n <= 1: 
    return False 
  if n == 2: 
    return True 
  if n % 2 == 0: 
    return False 
  i = 3 
  while i * i <= n: 
    if n % i == 0: 
      return False 
    i += 2 
  return True 

   
eg:求出20001到40001之间的质数(素数)
既然只能被1或者自己整出,那说明只有2次余数为0的时候,代码如下:

#!/usr/bin/python

L1=[]
for x in xrange(20001,40001):
 n = 0
 for y in xrange(1,x+1):
 if x % y == 0:
  n = n + 1
 if n == 2 :
 print x
 L1.append(x)
print L1

结果如下:

20011
20021
20023
20029
20047
20051
20063
20071
20089
20101
20107
20113
20117
20123
20129
20143
20147
20149
20161
20173
….

相关文章

Python进程间通信Queue消息队列用法分析

本文实例讲述了Python进程间通信Queue消息队列用法。分享给大家供大家参考,具体如下: 进程间通信-Queue Process之间有时需要通信,操作系统提供了很多机制来实现进程间的...

在linux下实现 python 监控usb设备信号

1. linux下消息记录 关于系统的各种消息一般都会记录在/var/log/messages文件中,有些主机在中默认情况下有可能没有启用,具体配置方法可参考下面这篇博客: 系统日志配置...

使用Python下的XSLT API进行web开发的简单教程

使用Python下的XSLT API进行web开发的简单教程

Kafka 样式的 soap 端点 Christopher Dix 所开发的“Kafka — XSL SOAP 工具箱”(请参阅 参考资料)是一种用于构造 SOAP 端点的 XSLT 框...

Python中SOAP项目的介绍及其在web开发中的应用

SOAP.py 客户机和服务器 SOAP.py 包含的是一些基本的东西。没有 Web 服务描述语言(Web Services Description Language,WSDL)或者任何...

Python实现的KMeans聚类算法实例分析

Python实现的KMeans聚类算法实例分析

本文实例讲述了Python实现的KMeans聚类算法。分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过...