深入理解python中的浅拷贝和深拷贝

yipeiwu_com6年前Python基础

在讲什么是深浅拷贝之前,我们先来看这样一个现象:

a = ['scolia', 123, [], ]
b = a[:]
b[2].append(666)
print a
print b

为什么我只对b进行修改,却影响到了a呢?看过我在之前的文章中就说过:序列中保存的都是内存的引用。

所以,当我们通过b去修改里面的空列表的时候,其实就是修改内存中的同一个对象,所以会影响到a。

a = ['scolia', 123, [], ]
b = a[:]
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

代码验证无误,所以虽然a和b是两个不同的对象,但是里面的引用都是一样的。这就是所谓新的对象,旧的内容。

但是,浅拷贝还不仅如此,看下面:

a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print a
print b

这又是怎么回事呢?

看过我在python变量赋值说明的同学会知道:对于字符串、数字等不可变的数据类型,修改就相当于重新赋值。在这里就相当于刷新引用。

代码验证一下:

a = ['scolia', 123, [], ]
b = a[:]
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

看来是正确的。

上面讲的这些就是浅拷贝,总结起来,浅拷贝只是拷贝了一系列引用,当我们在拷贝出来的对象对可修改的数据类型进行修改的时候,并没有改变引用,所以会影响原对象。而对不可修改的对象进行修改的是,则是新建了对象,刷新了引用,所以和原对象的引用不同,结果也就不同。

创建浅拷贝的方法:

1.切片操作

2.使用list()工厂函数新建对象。( b = list(a) )

那么深拷贝不就是将里面引用的对象重新创建了一遍并生成了一个新的一系列引用。

基本上是这样的,但是对于字符串、数字等不可修改的对象来说,重新创建一份似乎有点浪费内存,反正你到时要修改的时候都是新建对象,刷新引用的。所以还用原来的引用也无所谓,还能达到节省内存的目的。

看下代码验证:

from copy import deepcopy
a = ['scolia', 123, [], ]
b = deepcopy(a)
b[1] = 666
print id(a), id(a[0]), id(a[1]), id(a[2])
print id(b), id(b[0]), id(b[1]), id(b[2])

验证正确。

深拷贝的创建:

1.正如代码示例用一样,只能通过内置的copy模块的deepcopy()方法创建。

好了,关于深浅拷贝的问题就先说到这里,有什么错误或需要补充的以后会继续。

以上这篇深入理解python中的浅拷贝和深拷贝就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现文件快照加密保护的方法

本文实例讲述了python实现文件快照加密保护的方法。分享给大家供大家参考。具体如下: 这段代码可以对指定的目录进行扫描,包含子目录,对指定扩展名的文件进行SHA-1加密后存储在cvs文...

python读取视频流提取视频帧的两种方法

本文实例为大家分享了python读取视频流提取视频帧的具体代码,供大家参考,具体内容如下 方法一:通过imageio库和skimage库 1. 安装环境: pip install ima...

基于Python批量生成指定尺寸缩略图代码实例

基于Python批量生成指定尺寸缩略图代码实例

这篇文章主要介绍了基于Python批量生成指定尺寸缩略图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近我们商城上架的应用...

详解Python中的序列化与反序列化的使用

学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递...

Python Series从0开始索引的方法

如下所示: b.reset_index(drop=True) reset_index代表重新设置索引,drop=True为删除原索引。 以上这篇Python Series从0开始索...