最大K个数问题的Python版解法总结

yipeiwu_com5年前Python基础

TopK问题,即寻找最大的K个数,这个问题非常常见,比如从1千万搜索记录中找出最热门的10个关键词.
方法一:
先排序,然后截取前k个数.
时间复杂度:O(n*logn)+O(k)=O(n*logn)。
这种方式比较简单粗暴,提一下便是。

方法二:最大堆

我们可以创建一个大小为K的数据容器来存储最小的K个数,然后遍历整个数组,将每个数字和容器中的最大数进行比较,如果这个数大于容器中的最大值,则继续遍历,否则用这个数字替换掉容器中的最大值。这个方法的理解也十分简单,至于容器的选择,很多人第一反应便是最大堆,但是python中最大堆如何实现呢?我们可以借助实现了最小堆的heapq库,因为在一个数组中,每个数取反,则最大数变成了最小数,整个数字的顺序发生了变化,所以可以给数组的每个数字取反,然后借助最小堆,最后返回结果的时候再取反就可以了,代码如下:

import heapq
def get_least_numbers_big_data(self, alist, k):
  max_heap = []
  length = len(alist)
  if not alist or k <= 0 or k > length:
    return
  k = k - 1
  for ele in alist:
    ele = -ele
    if len(max_heap) <= k:
      heapq.heappush(max_heap, ele)
    else:
      heapq.heappushpop(max_heap, ele)

  return map(lambda x:-x, max_heap)


if __name__ == "__main__":
  l = [1, 9, 2, 4, 7, 6, 3]
  min_k = get_least_numbers_big_data(l, 3)

方法三:quick select

quick select算法.其实就类似于快排.不同地方在于quick select每趟只需要往一个方向走.
时间复杂度:O(n).

def qselect(A,k): 
  if len(A)<k:return A 
  pivot = A[-1] 
  right = [pivot] + [x for x in A[:-1] if x>=pivot] 
  rlen = len(right) 
  if rlen==k: 
    return right 
  if rlen>k: 
    return qselect(right, k) 
  else: 
    left = [x for x in A[:-1] if x<pivot] 
    return qselect(left, k-rlen) + right 
 
for i in range(1, 10): 
  print qselect([11,8,4,1,5,2,7,9], i) 

相关文章

python ddt数据驱动最简实例代码

在接口自动化测试中,往往一个接口的用例需要考虑 正确的、错误的、异常的、边界值等诸多情况,然后你需要写很多个同样代码,参数不同的用例。如果测试接口很多,不但需要写大量的代码,测试数据和代...

python检测空间储存剩余大小和指定文件夹内存占用的实例

1、检测指定路径下所有文件所占用内存 import os def check_memory(path, style='M'): i = 0 for dirpath, dirnam...

Python中字符串对齐方法介绍

目的   实现字符串的左对齐,右对齐,居中对齐。 方法   字符串内置了以下方法:其中width是指包含字符串S在内的宽度,fillchar默认是空格,也可以指定填充字符 复制代码...

python检测某个变量是否有定义的方法

本文实例讲述了python检测某个变量是否有定义的方法。分享给大家供大家参考。具体如下: 第一种方法使用内置函数locals(): 'testvar'   in&nb...

python实现flappy bird游戏

flappy bird最近火遍大江南北,教你用python写游戏的第一课就向它开刀了。 这个课程的基础是假定你有比较不错的编程功底,对python有一点点的基础。 一、准备工作 1、用p...