最大K个数问题的Python版解法总结

yipeiwu_com5年前Python基础

TopK问题,即寻找最大的K个数,这个问题非常常见,比如从1千万搜索记录中找出最热门的10个关键词.
方法一:
先排序,然后截取前k个数.
时间复杂度:O(n*logn)+O(k)=O(n*logn)。
这种方式比较简单粗暴,提一下便是。

方法二:最大堆

我们可以创建一个大小为K的数据容器来存储最小的K个数,然后遍历整个数组,将每个数字和容器中的最大数进行比较,如果这个数大于容器中的最大值,则继续遍历,否则用这个数字替换掉容器中的最大值。这个方法的理解也十分简单,至于容器的选择,很多人第一反应便是最大堆,但是python中最大堆如何实现呢?我们可以借助实现了最小堆的heapq库,因为在一个数组中,每个数取反,则最大数变成了最小数,整个数字的顺序发生了变化,所以可以给数组的每个数字取反,然后借助最小堆,最后返回结果的时候再取反就可以了,代码如下:

import heapq
def get_least_numbers_big_data(self, alist, k):
  max_heap = []
  length = len(alist)
  if not alist or k <= 0 or k > length:
    return
  k = k - 1
  for ele in alist:
    ele = -ele
    if len(max_heap) <= k:
      heapq.heappush(max_heap, ele)
    else:
      heapq.heappushpop(max_heap, ele)

  return map(lambda x:-x, max_heap)


if __name__ == "__main__":
  l = [1, 9, 2, 4, 7, 6, 3]
  min_k = get_least_numbers_big_data(l, 3)

方法三:quick select

quick select算法.其实就类似于快排.不同地方在于quick select每趟只需要往一个方向走.
时间复杂度:O(n).

def qselect(A,k): 
  if len(A)<k:return A 
  pivot = A[-1] 
  right = [pivot] + [x for x in A[:-1] if x>=pivot] 
  rlen = len(right) 
  if rlen==k: 
    return right 
  if rlen>k: 
    return qselect(right, k) 
  else: 
    left = [x for x in A[:-1] if x<pivot] 
    return qselect(left, k-rlen) + right 
 
for i in range(1, 10): 
  print qselect([11,8,4,1,5,2,7,9], i) 

相关文章

python写的一个squid访问日志分析的小程序

python写的一个squid访问日志分析的小程序

这两周组里面几位想学习python,于是我们就创建了一个这样的环境和氛围来给大家学习。 昨天在群里,贴了一个需求,就是统计squid访问日志中ip 访问数和url的访问数并排序,不少同学...

Django中的cookie和session

Django中的cookie和session

http协议是无状态的。下一次去访问一个页面时并不知道上一次对这个页面做了什么。 无状态的应用层面的原因是:浏览器和服务器之间的通信都遵守HTTP协议。 根本原因是:浏览器与服务器是使用...

numpy np.newaxis 的实用分享

如下所示: >> type(np.newaxis) NoneType >> np.newaxis == None True np.newaxis 在使用和功...

python筛选出两个文件中重复行的方法

本文实例为大家分享了python脚本筛选出两个文件中重复的行数,供大家参考,具体内容如下 ''' 查找A文件中,与B文件中内容不重复的内容 ''' #!usr/bin/python...

Python实现报警信息实时发送至邮箱功能(实例代码)

Python实现报警信息实时发送至邮箱功能(实例代码)

Python实现报警信息实时发送至邮箱功能,具体内容如下所示: 程序设计 实现代码 cpu.py # -*- coding: utf-8 -*- import psutil im...