简单谈谈python中的Queue与多进程

yipeiwu_com5年前Python基础

最近接触一个项目,要在多个虚拟机中运行任务,参考别人之前项目的代码,采用了多进程来处理,于是上网查了查python中的多进程

一、先说说Queue(队列对象)

Queue是python中的标准库,可以直接import 引用,之前学习的时候有听过著名的“先吃先拉”与“后吃先吐”,其实就是这里说的队列,队列的构造的时候可以定义它的容量,别吃撑了,吃多了,就会报错,构造的时候不写或者写个小于1的数则表示无限多

import Queue

q = Queue.Queue(10)

向队列中放值(put)

q.put(‘yang')

q.put(4)

q.put([‘yan','xing'])

在队列中取值get()

默认的队列是先进先出的

>>> q.get()
‘yang'
>>> q.get()
4
>>> q.get()
[‘yan', ‘xing']

当一个队列为空的时候如果再用get取则会堵塞,所以取队列的时候一般是用到

get_nowait()方法,这种方法在向一个空队列取值的时候会抛一个Empty异常

所以更常用的方法是先判断一个队列是否为空,如果不为空则取值

队列中常用的方法

Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.get([block[, timeout]]) 获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)

二、multiprocessing中使用子进程概念

from multiprocessing import Process

可以通过Process来构造一个子进程

p = Process(target=fun,args=(args))

再通过p.start()来启动子进程

再通过p.join()方法来使得子进程运行结束后再执行父进程

from multiprocessing import Process
import os
 
# 子进程要执行的代码
def run_proc(name):
 print 'Run child process %s (%s)...' % (name, os.getpid())
 
if __name__=='__main__':
 print 'Parent process %s.' % os.getpid()
 p = Process(target=run_proc, args=('test',))
 print 'Process will start.'
 p.start()
 p.join()
 print 'Process end.'

三、在multiprocessing中使用pool

如果需要多个子进程时可以考虑使用进程池(pool)来管理

from multiprocessing import Pool

from multiprocessing import Pool
import os, time
 
def long_time_task(name):
 print 'Run task %s (%s)...' % (name, os.getpid())
 start = time.time()
 time.sleep(3)
 end = time.time()
 print 'Task %s runs %0.2f seconds.' % (name, (end - start))
 
if __name__=='__main__':
 print 'Parent process %s.' % os.getpid()
 p = Pool()
 for i in range(5):
  p.apply_async(long_time_task, args=(i,))
 print 'Waiting for all subprocesses done...'
 p.close()
 p.join()
 print 'All subprocesses done.'

pool创建子进程的方法与Process不同,是通过

p.apply_async(func,args=(args))实现,一个池子里能同时运行的任务是取决你电脑的cpu数量,如我的电脑现在是有4个cpu,那会子进程task0,task1,task2,task3可以同时启动,task4则在之前的一个某个进程结束后才开始

上面的程序运行后的结果其实是按照上图中1,2,3分开进行的,先打印1,3秒后打印2,再3秒后打印3

代码中的p.close()是关掉进程池子,是不再向里面添加进程了,对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

当时也可以是实例pool的时候给它定义一个进程的多少

如果上面的代码中p=Pool(5)那么所有的子进程就可以同时进行

三、多个子进程间的通信

多个子进程间的通信就要采用第一步中说到的Queue,比如有以下的需求,一个子进程向队列中写数据,另外一个进程从队列中取数据,

#coding:gbk

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
 for value in ['A', 'B', 'C']:
  print 'Put %s to queue...' % value
  q.put(value)
  time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
 while True:
  if not q.empty():
   value = q.get(True)
   print 'Get %s from queue.' % value
   time.sleep(random.random())
  else:
   break

if __name__=='__main__':
 # 父进程创建Queue,并传给各个子进程:
 q = Queue()
 pw = Process(target=write, args=(q,))
 pr = Process(target=read, args=(q,))
 # 启动子进程pw,写入:
 pw.start() 
 # 等待pw结束:
 pw.join()
 # 启动子进程pr,读取:
 pr.start()
 pr.join()
 # pr进程里是死循环,无法等待其结束,只能强行终止:
 print
 print '所有数据都写入并且读完'


四、关于上面代码的几个有趣的问题

if __name__=='__main__': 
 # 父进程创建Queue,并传给各个子进程:
 q = Queue()
 p = Pool()
 pw = p.apply_async(write,args=(q,)) 
 pr = p.apply_async(read,args=(q,))
 p.close()
 p.join()
 
 print
 print '所有数据都写入并且读完'

如果main函数写成上面的样本,本来我想要的是将会得到一个队列,将其作为参数传入进程池子里的每个子进程,但是却得到

RuntimeError: Queue objects should only be shared between processes through inheritance

的错误,查了下,大意是队列对象不能在父进程与子进程间通信,这个如果想要使用进程池中使用队列则要使用multiprocess的Manager类

if __name__=='__main__':
 manager = multiprocessing.Manager()
 # 父进程创建Queue,并传给各个子进程:
 q = manager.Queue()
 p = Pool()
 pw = p.apply_async(write,args=(q,))
 time.sleep(0.5)
 pr = p.apply_async(read,args=(q,))
 p.close()
 p.join()
 
 print
 print '所有数据都写入并且读完'

这样这个队列对象就可以在父进程与子进程间通信,不用池则不需要Manager,以后再扩展multiprocess中的Manager类吧

关于锁的应用,在不同程序间如果有同时对同一个队列操作的时候,为了避免错误,可以在某个函数操作队列的时候给它加把锁,这样在同一个时间内则只能有一个子进程对队列进行操作,锁也要在manager对象中的锁

#coding:gbk
 
from multiprocessing import Process,Queue,Pool
import multiprocessing
import os, time, random
 
# 写数据进程执行的代码:
def write(q,lock):
 lock.acquire() #加上锁
 for value in ['A', 'B', 'C']:
  print 'Put %s to queue...' % value  
  q.put(value)  
 lock.release() #释放锁 
 
# 读数据进程执行的代码:
def read(q):
 while True:
  if not q.empty():
   value = q.get(False)
   print 'Get %s from queue.' % value
   time.sleep(random.random())
  else:
   break
 
if __name__=='__main__':
 manager = multiprocessing.Manager()
 # 父进程创建Queue,并传给各个子进程:
 q = manager.Queue()
 lock = manager.Lock() #初始化一把锁
 p = Pool()
 pw = p.apply_async(write,args=(q,lock)) 
 pr = p.apply_async(read,args=(q,))
 p.close()
 p.join()
 
 print
 print '所有数据都写入并且读完'

相关文章

centos7之Python3.74安装教程

centos7之Python3.74安装 安装版本:Python3.74 系统版本:centos7 系统默认安装Python2.7,保留。 安装/usr/bin/Python3 安装需要...

详谈pandas中agg函数和apply函数的区别

在利用python进行数据分析 这本书中其实没有明确表明这两个函数的却别,而是说apply更一般化. 其实在这本书的第九章‘数组及运算和转换'点到了两者的一点点区别:agg是用来聚合运算...

Django 通过JS实现ajax过程详解

ajax的优缺点 AJAX使用Javascript技术向服务器发送异步请求 AJAX无须刷新整个页面 因为服务器响应内容不再是整个页面,而是页面中的局部,所以AJAX性能高 小练习:计算...

Python实现二维数组输出为图片

对于二维数组,img_mask [[ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] ..., [266...

使用Pandas对数据进行筛选和排序的实现

使用Pandas对数据进行筛选和排序的实现

筛选和排序是Excel中使用频率最多的功能,通过这个功能可以很方便的对数据表中的数据使用指定的条件进行筛选和计算,以获得需要的结果。在Pandas中通过.sort和.loc函数也可以实现...