Python 绘图和可视化详细介绍

yipeiwu_com6年前Python基础

Python之绘图和可视化

1. 启用matplotlib

最常用的Pylab模式的IPython(IPython --pylab)

2. matplotlib的图像都位于Figure对象中。

可以使用plt.figure创建一个新的Figure,不能通过空Figure绘图,必须用add_subplot创建一个或多个subplot axes[0,1]可以通过sharex和sharey指定subplot应该具有相同的X轴或Y轴。

利用Figure的subplots_adjust方法可以修改间距,wspace和hspace用于控制宽度和高度的百分比,可以用作subplot之间的间距。

3. 颜色、标记和线型

  ax.plot(x,y,'g--')

4. 刻度标签和实例

图表装饰项,实现方法:使用过程型 pyplot接口以及更为面向对象的原生matplotlib API。

5. 添加图例(legend)

图例是另一种用于标识图表元素的重要工具,最简单的方式是在添加suplot的时候传入label参数:

  fig = plt.figure();ax = add_subplot(1,1,1)
  ax.plot(randn(1000).cumsum(),,'k',label='one')

6. 注解以及在Subplot上绘图

注解可以通过text、arrow和annotate等函数进行添加。

7. 将图表保存到文件

得到一张带有最小白边且分辨率为400DPI的PNG图片。

  plt.savefig('figpath.png',dpi=400,bbox_inches='tight')

其中,dpi每英寸点数和bbox_inches可以剪出当前图表周围的空白部分。

8. matplotlib配置

利用rc方法,plt.rc('figure',figsize=(10,10))全局默认图像大小为10X10

也可以写成字典:

  font_options = {'family':'monospace','weight':'bold','size':'small'}
  plt.rc('font',**font_options)

9. pandas中的绘图函数

线形图:默认情况
柱状图:bar;barh
直方图和密度图:Series的hist方法、kin='kde'
散布图:plt.scatter

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python批量修改文本文件内容的方法

Python批量替换文件内容,支持嵌套文件夹 import os path="./" for root,dirs,files in os.walk(path): for name...

分享Pycharm中一些不为人知的技巧

分享Pycharm中一些不为人知的技巧

工欲善其事必先利其器,Pycharm 是最受欢迎的Python开发工具,它提供的功能非常强大,是构建大型项目的理想工具之一,如果能挖掘出里面实用技巧,能带来事半功倍的效果。 以下操作都是...

Python异常处理操作实例详解

本文实例讲述了Python异常处理操作。分享给大家供大家参考,具体如下: 常见异常 在python中不同的异常可以用不同的类型(python中统一了类与类型,类型即类)去标识,不同的类对...

Python3.X 线程中信号量的使用方法示例

Python3.X 线程中信号量的使用方法示例

前言 最近在学习python,发现了解线程信号量的基础知识,对深入理解python的线程会大有帮助。所以本文将给大家介绍Python3.X线程中信号量的使用方法,下面话不多说,来一起看看...

解决python给列表里添加字典时被最后一个覆盖的问题

如下所示: >>> item={} ; items=[] #先声明一个字典和一个列表,字典用来添加到列表里面 >>> item['index']...