详解python并发获取snmp信息及性能测试

yipeiwu_com5年前Python基础

python & snmp

用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmppysnmp两个库。网上有较多的关于两个库的例子。

本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息。

netsnmp

先说netsnmp。python的netsnmp,其实是来自于net-snmp包。

python通过一个c文件调用net-snmp的接口获取数据。

因此,在并发获取多台机器的时候,不能够使用协程获取。因为使用协程,在get数据的时候,协程会一直等待net-snmp接口返回数据,而不会像socket使用时那样在等待数据时把CPU切换给其他协程使用。从这点上来说,使用协程和串行获取没有区别。

那么如何解决并发获取的问题呢?可以使用线程,多线程获取(当然也可以使用多进程)。多个线程同时调用net-snmp的接口获取数据,然后cpu在多个线程之间不停切换。当一个线程获取一个结果后,可以继续调用接口获取下一个snmp数据。

这里我写了一个样例程序。首先把所有的host和oid做成任务放到队列里,然后启动多个线程,去执行获取任务。程序样例如下:

import threading
import time
import netsnmp
import Queue

start_time = time.time()
hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114",
     "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120",
     "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15",
     "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136",
     "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140",
     "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127",
     "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118",
     "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62",
     "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31",
     "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35",
     "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133",
     "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155",
     "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231",
     "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14",
     "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2",
     "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232",
     "192.24.212.231", "192.24.212.230"]
oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1",
    ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0",
    ".1.3.6.1.4.1.2021.4.15.0"]
myq = Queue.Queue()
rq = Queue.Queue()

#把host和oid组成任务
for host in hosts:
  for oid in oids:
    myq.put((host,oid))

def poll_one_host():
  while True:
    try:
      #死循环从队列中获取任务,直到队列任务为空
      host, oid = myq.get(block=False)
      session = netsnmp.Session(Version=2, DestHost=host, Community="cluster",Timeout=3000000,Retries=0)
      var_list = netsnmp.VarList()
      var_list.append(netsnmp.Varbind(oid))
      ret = session.get(var_list)
      rq.put((host, oid, ret, (time.time() - start_time)))
    except Queue.Empty:
      break

thread_arr = []

#开启多线程
num_thread = 50
for i in range(num_thread):
  t = threading.Thread(target=poll_one_host, kwargs={})
  t.setDaemon(True)
  t.start()
  thread_arr.append(t)

#等待任务执行完毕
for i in range(num_thread):
  thread_arr[i].join()

while True:
  try:
    info = rq.get(block=False)
    print info
  except Queue.Empty:
    print time.time() - start_time
    break

netsnmp除了支持get操作之外,还支持walk操作,即遍历某个oid。

但是walk使用的时候需要谨慎,以免导致高延时等问题,具体可以参见之前的一篇snmpwalk高延时问题分析的博客。

pysnmp

pysnmp是用python实现的一套snmp协议的库。其自身提供了对于异步的支持。

import time
import Queue
from pysnmp.hlapi.asyncore import *
t = time.time()
myq = Queue.Queue()

#回调函数。在有数据返回时触发
def cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx):
   myq.put((time.time()-t, varBinds))
hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114",
     "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120",
     "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15",
     "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136",
     "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140",
     "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127",
     "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118",
     "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62",
     "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31",
     "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35",
     "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133",
     "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155",
     "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231",
     "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14",
     "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2",
     "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232",
     "192.24.212.231", "192.24.212.230"]

oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1",
    ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0",
    ".1.3.6.1.4.1.2021.4.15.0"]
    
snmpEngine = SnmpEngine()

#添加任务
for oid in oids:
  for h in hosts:
    getCmd(snmpEngine,
      CommunityData('cluster'),
      UdpTransportTarget((h, 161), timeout=3, retries=0,),
      ContextData(),
      ObjectType(ObjectIdentity(oid)),
      cbFun=cbFun)
time1 = time.time() - t

#执行异步获取snmp
snmpEngine.transportDispatcher.runDispatcher()

#打印结果
while True:
  try:
    info = myq.get(block=False)
    print info
  except Queue.Empty:
    print time1
    print time.time() - t
    break

pysnmp本身只支持最基础的get和getnext命令,因此如果想使用walk,需要自己进行实现。

性能测试

在同一个环境下,对两者进行了性能测试。两者对198个host,10个oid进行采集。

测试组 耗时(sec)
netsnmp(20线程) 6.252
netsnmp(50线程) 3.269
netsnmp(200线程) 3.265
pysnmp 4.812

可以看到netsnmp的采集速度跟线程数有关。当线程数增大到一定程度,采集时间不再缩短。因为开辟线程同样会消耗时间。而已有的线程已经足够处理。

pysnmp性能较之略差一下。详细分析pysnmp在添加任务(执行getCmd时)消耗了约1.2s,之后的采集约消耗3.3秒。

在增加了oid数,在进行实验。host仍然是198个,oid是42个。

测试组 耗时(sec)
netsnmp(20线程) 30.935
netsnmp(50线程) 12.914
netsnmp(200线程) 4.044
pysnmp 11.043

可以看到差距被进一步拉大。在线程足够多的情况下,netsnmp的效率要明显强于pysnmp。

因为二者都支持可以并行采集多个host,从易用性来说,netsnmp更为简单一些,且netsnmp支持walk功能。本文更加推荐netsnmp。

安装netsnmp需要安装net-snmp。如果centos,则使用yum会较为方便。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python-序列解包(对可迭代元素的快速取值方法)

一般情况下 x,y,z = 1,2,3 print("x:",x) print("y:",y) print("z:",z) #运行结果 x: 1 y: 2 z: 3 对元祖序...

Python生成器定义与简单用法实例分析

本文实例讲述了Python生成器定义与简单用法。分享给大家供大家参考,具体如下: 一、什么是生成器 在Python中,由于受到内存的限制,列表容量肯定是有限的。例如我们创建一个包含一亿个...

python线程中的同步问题及解决方法

多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改1000000次,num的最终的结果应该为2000000。但是由于是多线程访问,有...

PyQt5每天必学之弹出消息框

PyQt5每天必学之弹出消息框

默认情况下,如果我们点击标题栏上的 X 按钮,QWidget 关闭。有时候,我们需要改变这个默认行为。例如,如果我们有一个文件,要在编辑器中打开,我们可以先显示一个消息框,确认打开与否的...

python 多个参数不为空校验方法

在实际开发中经常需要对前端传递的多个参数进行不为空校验,可以使用python提供的all()函数 if not all([arg1, arg2, arg3]): # 当 arg1,...