对Python进行数据分析_关于Package的安装问题

yipeiwu_com5年前Python基础

一、为什么要使用Python进行数据分析?

python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。

二、Python的优势与劣势:

1.Python是一种解释型语言,运行速度比编译型数据慢。

2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发、多线程的应用程序。

三、使用Python进行数据分析常用的扩展包。

目前初始阶段的学习主要涉及4个包的安装:numpy、scipy、pandas、matplotlib

我笔记本里安装的是Python2.7版本,在安装了pip和setuptools工具,关于pip和setuptools工具的安装详见相关笔记。

最初使用的安装命令很简单:

pip install pandas
pip install numpy
pip install scipy
pip install matplotlib

但是只安装成功了numpy和matplotlib两个包,pandas和scipy安装失败,查阅了相关资料发现可能是版本问题或者包的依赖相关。

最终在stack overflow发现了一个很棒的Python包提供网址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy

--这里要Mark一下,后边争取写一个爬虫,搞下来所有的包防止丢失。

以上网址是加州大学欧文分校提供的Python相关库的下载地址,修改#后边的名字可以进去其他包的下载页面,此页面中提供了安装某个包需要依赖的前置包的说明,非常友好。

依赖包说明类似:

Pandas, a cross-section and time series data analysis toolkit.
Requires numpy, dateutil, pytz, setuptools, and optionally numexpr, bottleneck, scipy, matplotlib, pytables, lxml, xarray, blosc, backports.lzma, statsmodels, sqlalchemy and other dependencies.

然后就是一堆的pandas下载地址。

最终根据各个包的相关性先安装了numpy+mkl的whl文件,然后是安装scipy最后是pandas。

安装的方法如下:

1.下载对应的4个包放在D:\目录下(很奇怪我笔记本是AMD64位的但是安装amd64版本的包报不支持的platform的错误,安装了32位的可以正常import)

2.cmd命令行进入D:\目录执行:pip install <包的全名>进行安装。(如果已安装了其他错误的版本,使用pip uninstall卸载)

最后使用如下类似命令查看包的安装位置:

 

以上这篇对Python进行数据分析_关于Package的安装问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中列表(list)操作方法汇总

本文实例汇总了Python中关于列表的常用操作方法,供大家参考借鉴。具体方法如下: 一、Python创建列表: sample_list = ['a',1,('a','b')]...

详解Python3.6的py文件打包生成exe

详解Python3.6的py文件打包生成exe

原文提到的要点: 1. Python版本32位 (文件名为 python-3.6.1.exe) 2. 安装所有用到的模块(原文博主用的是openpyxl,我用到的有urllib中的req...

python转换字符串为摩尔斯电码的方法

本文实例讲述了python转换字符串为摩尔斯电码的方法。分享给大家供大家参考。具体实现方法如下: chars = ",.0123456789?abcdefghijklmnop...

Python实现定制自动化业务流量报表周报功能【XlsxWriter模块】

Python实现定制自动化业务流量报表周报功能【XlsxWriter模块】

本文实例讲述了Python实现定制自动化业务流量报表周报功能。分享给大家供大家参考,具体如下: 一 点睛 本次实践通过定制网站5个频道的流量报表周报,通过XlsxWriter 模块将流量...

基于python 二维数组及画图的实例详解

1、二维数组取值 注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型 #二维数组 import numpy as np list1=[[1.73...