对Python进行数据分析_关于Package的安装问题

yipeiwu_com6年前Python基础

一、为什么要使用Python进行数据分析?

python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。

二、Python的优势与劣势:

1.Python是一种解释型语言,运行速度比编译型数据慢。

2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发、多线程的应用程序。

三、使用Python进行数据分析常用的扩展包。

目前初始阶段的学习主要涉及4个包的安装:numpy、scipy、pandas、matplotlib

我笔记本里安装的是Python2.7版本,在安装了pip和setuptools工具,关于pip和setuptools工具的安装详见相关笔记。

最初使用的安装命令很简单:

pip install pandas
pip install numpy
pip install scipy
pip install matplotlib

但是只安装成功了numpy和matplotlib两个包,pandas和scipy安装失败,查阅了相关资料发现可能是版本问题或者包的依赖相关。

最终在stack overflow发现了一个很棒的Python包提供网址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy

--这里要Mark一下,后边争取写一个爬虫,搞下来所有的包防止丢失。

以上网址是加州大学欧文分校提供的Python相关库的下载地址,修改#后边的名字可以进去其他包的下载页面,此页面中提供了安装某个包需要依赖的前置包的说明,非常友好。

依赖包说明类似:

Pandas, a cross-section and time series data analysis toolkit.
Requires numpy, dateutil, pytz, setuptools, and optionally numexpr, bottleneck, scipy, matplotlib, pytables, lxml, xarray, blosc, backports.lzma, statsmodels, sqlalchemy and other dependencies.

然后就是一堆的pandas下载地址。

最终根据各个包的相关性先安装了numpy+mkl的whl文件,然后是安装scipy最后是pandas。

安装的方法如下:

1.下载对应的4个包放在D:\目录下(很奇怪我笔记本是AMD64位的但是安装amd64版本的包报不支持的platform的错误,安装了32位的可以正常import)

2.cmd命令行进入D:\目录执行:pip install <包的全名>进行安装。(如果已安装了其他错误的版本,使用pip uninstall卸载)

最后使用如下类似命令查看包的安装位置:

 

以上这篇对Python进行数据分析_关于Package的安装问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于Matplotlib库简单绘制折线图的方法示例

Python基于Matplotlib库简单绘制折线图的方法示例

本文实例讲述了Python基于Matplotlib库简单绘制折线图的方法。分享给大家供大家参考,具体如下: Matplotlib画折线图,有一些离散点,想看看这些点的变动趋势: im...

Django中日期处理注意事项与自定义时间格式转换详解

Django中日期处理注意事项与自定义时间格式转换详解

前言 我们在用Django创建models时,常常会涉及时间日期字段的处理,Django里日期相关Field有DateTimeField、DateField和TimeField三种类型,...

python生成随机图形验证码详解

使用python生成随机图片验证码,需要使用pillow模块 1.安装pillow模块 pip install pillow 2.pillow模块的基本使用 1.创建图片 fr...

Python利用pandas处理Excel数据的应用详解

Python利用pandas处理Excel数据的应用详解

最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储...

对TensorFlow中的variables_to_restore函数详解

variables_to_restore函数,是TensorFlow为滑动平均值提供。之前,也介绍过通过使用滑动平均值可以让神经网络模型更加的健壮。我们也知道,其实在TensorFlow...