Python 中pandas.read_excel详细介绍

yipeiwu_com5年前Python基础

Python 中pandas.read_excel详细介绍

#coding:utf-8
import pandas as pd
import numpy as np

filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls"
#filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3a-ea03-46b9-8033-73615ed07816.xls"
df = pd.read_excel(filefullpath,skiprows=[0])
#df = pd.read_excel(filefullpath, sheetname=[0,2],skiprows=[0])
#sheetname指定为读取几个sheet,sheet数目从0开始
#如果sheetname=[0,2],那代表读取第0页和第2页的sheet
#skiprows=[0]代表读取跳过的行数第0行,不写代表不跳过标题
#df = pd.read_excel(filefullpath, sheetname=None ,skiprows=[0])

print df
print type(df)
#若果有多页,type(df)就为<type 'dict'>
#如果就一页,type(df)就为<class 'pandas.core.frame.DataFrame'>
#{0:dataframe,1:dataframe,2:dataframe}

pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0,
 index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None,
 na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None,
 engine=None, squeeze=False, **kwds)

Read an Excel table into a pandas DataFrame

参数解析:

io : string, path object (pathlib.Path or py._path.local.LocalPath),

  file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

sheetname : string, int, mixed list of strings/ints, or None, default 0

  Strings are used for sheet names, Integers are used in zero-indexed sheet positions.

  Lists of strings/integers are used to request multiple sheets.

  Specify None to get all sheets.

  str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets.

  Available Cases

    Defaults to 0 -> 1st sheet as a DataFrame
    1 -> 2nd sheet as a DataFrame
    “Sheet1” -> 1st sheet as a DataFrame
    [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
    None -> All sheets as a dictionary of DataFrames

header : int, list of ints, default 0

  Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex

skiprows : list-like

  Rows to skip at the beginning (0-indexed)

skip_footer : int, default 0

  Rows at the end to skip (0-indexed)

index_col : int, list of ints, default None

  Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex

names : array-like, default None

  List of column names to use. If file contains no header row, then you should explicitly pass header=None

converters : dict, default None

  Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.

parse_cols : int or list, default None

    If None then parse all columns,
    If int then indicates last column to be parsed
    If list of ints then indicates list of column numbers to be parsed
    If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

squeeze : boolean, default False

  If the parsed data only contains one column then return a Series

na_values : list-like, default None

  List of additional strings to recognize as NA/NaN

thousands : str, default None

  Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

keep_default_na : bool, default True

  If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to

verbose : boolean, default False

  Indicate number of NA values placed in non-numeric columns

engine: string, default None

  If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float : boolean, default True

  convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names : boolean, default None

  DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True.

return返回的结果

parsed : DataFrame or Dict of DataFrames

  DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned.

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python 文本文件内容批量抽取实例

Python 文本文件内容批量抽取实例

Python新手编写脚本处理数据,各种心酸各种语法查找,以此留念! 原始数据格式如下图所示: 这里是一个人脸测试数据,其中每行第一个为测试图片编号,后面为Top 7图片编号及其对应的评...

在Python的Django框架中更新数据库数据的方法

先使用一些关键参数创建对象实例,如下: >>> p = Publisher(name='Apress', ... address='2855 Telegra...

Python简单网络编程示例【客户端与服务端】

本文实例讲述了Python简单网络编程。分享给大家供大家参考,具体如下: 内容目录 1. 客户端(client.py) 2. 服务端(server.py) 一、客户端(client.py...

python的debug实用工具 pdb详解

叨逼叨 首先,介绍一下 pdb 调试,pdb 是 python 的一个内置模块,用于命令行来调试 Python 代码。或许你会说,现在用 Pycharm 等编辑器来调试代码很方便,为啥要...

使用Python脚本来控制Windows Azure的简单教程

使用Python脚本来控制Windows Azure的简单教程

inux开发人员经常使用 Python 完成小块的工作,因为你可以编写脚本的情况很容易。它已经成为完成配置和部署等小任务的一个流行方式。Windows Azure,微软的云,也没有什么不...