python数据预处理之将类别数据转换为数值的方法

yipeiwu_com5年前Python基础

在进行python数据分析的时候,首先要进行数据预处理。

有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理。

目前了解到的大概有三种方法:

1,通过LabelEncoder来进行快速的转换;

2,通过mapping方式,将类别映射为数值。不过这种方法适用范围有限;

3,通过get_dummies方法来转换。

import pandas as pd
from io import StringIO

csv_data = '''A,B,C,D
1,2,3,4
5,6,,8
0,11,12,'''

df = pd.read_csv(StringIO(csv_data))
print(df)
#统计为空的数目
print(df.isnull().sum())
print(df.values)

#丢弃空的
print(df.dropna())
print('after', df)
from sklearn.preprocessing import Imputer
# axis=0 列  axis = 1 行
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr.fit(df) # fit 构建得到数据
imputed_data = imr.transform(df.values) #transform 将数据进行填充
print(imputed_data)

df = pd.DataFrame([['green', 'M', 10.1, 'class1'],
          ['red', 'L', 13.5, 'class2'],
          ['blue', 'XL', 15.3, 'class1']])
df.columns =['color', 'size', 'price', 'classlabel']
print(df)

size_mapping = {'XL':3, 'L':2, 'M':1}
df['size'] = df['size'].map(size_mapping)
print(df)

## 遍历Series
for idx, label in enumerate(df['classlabel']):
  print(idx, label)

#1, 利用LabelEncoder类快速编码,但此时对color并不适合,
#看起来,好像是有大小的
from sklearn.preprocessing import LabelEncoder
class_le = LabelEncoder()
color_le = LabelEncoder()
df['classlabel'] = class_le.fit_transform(df['classlabel'].values)
#df['color'] = color_le.fit_transform(df['color'].values)
print(df)

#2, 映射字典将类标转换为整数
import numpy as np
class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
df['classlabel'] = df['classlabel'].map(class_mapping)
print('2,', df)


#3,处理1不适用的
#利用创建一个新的虚拟特征
from sklearn.preprocessing import OneHotEncoder
pf = pd.get_dummies(df[['color']])
df = pd.concat([df, pf], axis=1)
df.drop(['color'], axis=1, inplace=True)
print(df)

以上这篇python数据预处理之将类别数据转换为数值的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python滑块验证码的破解实现

python滑块验证码的破解实现

破解滑块验证码的思路主要有2种: 获得一张完整的背景图和一张有缺口的图片,两张图片进行像素上的一一对比,找出不一样的坐标。 获得一张有缺口的图片和需要验证的小图,两张图片进行二...

Python文本处理之按行处理大文件的方法

以行的形式读出一个文件最简单的方式是使用文件对象的readline()、readlines()和xreadlines()方法。 Python2.2+为这种频繁的操作提供了一个简化的语法—...

python使用Flask操作mysql实现登录功能

python使用Flask操作mysql实现登录功能

用到的一些知识点:Flask-SQLAlchemy、Flask-Login、Flask-WTF、PyMySQL 这里通过一个完整的登录实例来介绍,程序已经成功运行,在未登录时拦截了suc...

详解Python之unittest单元测试代码

详解Python之unittest单元测试代码

前言 编写函数或者类时,还可以为其编写测试。通过测试,可确定代码面对各种输入都能够按要求的那样工作。 本次我将介绍如何使用Python模块unittest中的工具来测试代码。 测试函数...

利用Python实现微信找房机器人实例教程

利用Python实现微信找房机器人实例教程

目的 两年前曾为了租房做过一个找房机器人 「爬取豆瓣租房并定时推送到微信」,维护一段时间后就荒废了。 当时因为代码比较简单一直没开源,现在想想说不定开源后也能帮助一些同学更好的找到租房信...