python中matplotlib实现最小二乘法拟合的过程详解

yipeiwu_com5年前Python基础

前言

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

一、最小二乘法拟合直线

生成样本点

首先,我们在直线 y = 3 + 5x 附近生成服从正态分布的随机点,作为拟合直线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# 在直线 y = 3 + 5x 附近生成随机点
X = np.arange(0, 5, 0.1) 
Z = [3 + 5 * x for x in X] 
Y = [np.random.normal(z, 0.5) for z in Z]

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

拟合直线

设 y = a0 + a1*x,我们利用最小二乘法的正则方程组来求解未知系数 a0 与 a1。

numpy 的 linalg 模块中有一个 solve 函数,它可以根据方程组的系数矩阵和方程右端构成的向量来求解未知量。

def linear_regression(x, y): 
 N = len(x)
 sumx = sum(x)
 sumy = sum(y)
 sumx2 = sum(x**2)
 sumxy = sum(x*y)

 A = np.mat([[N, sumx], [sumx, sumx2]])
 b = np.array([sumy, sumxy])

 return np.linalg.solve(A, b)

a0, a1 = linear_regression(X, Y) 

绘制直线

此时,我们已经得到了拟合后的直线方程系数 a0 和 a1。接下来,我们绘制出这条直线,并与样本点做对比。

# 生成拟合直线的绘制点
_X = [0, 5] 
_Y = [a0 + a1 * x for x in _X]

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x".format(a0, a1)) 
plt.show() 

拟合效果如下:

二、最小二乘法拟合曲线

生成样本点

与生成直线样本点相同,我们在曲线 y = 2 + 3x + 4x^2 附近生成服从正态分布的随机点,作为拟合曲线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# y = 2 + 3x + 4x^2
X = np.arange(0, 5, 0.1) 
Z = [2 + 3 * x + 4 * x ** 2 for x in X] 
Y = np.array([np.random.normal(z,3) for z in Z])

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

拟合曲线

设该曲线的方程为 y = a0 + a1*x + a2*x^2,同样,我们通过正则方程组来求解未知量 a0、a1 和 a2。

# 生成系数矩阵A
def gen_coefficient_matrix(X, Y): 
 N = len(X)
 m = 3
 A = []
 # 计算每一个方程的系数
 for i in range(m):
  a = []
  # 计算当前方程中的每一个系数
  for j in range(m):
   a.append(sum(X ** (i+j)))
  A.append(a)
 return A

# 计算方程组的右端向量b
def gen_right_vector(X, Y): 
 N = len(X)
 m = 3
 b = []
 for i in range(m):
  b.append(sum(X**i * Y))
 return b

A = gen_coefficient_matrix(X, Y) 
b = gen_right_vector(X, Y)

a0, a1, a2 = np.linalg.solve(A, b) 

绘制曲线

我们根据求得的曲线方程,绘制出曲线的图像。

# 生成拟合曲线的绘制点
_X = np.arange(0, 5, 0.1) 
_Y = np.array([a0 + a1*x + a2*x**2 for x in _X])

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x + {}$x^2$ ".format(a0, a1, a2)) 
plt.show() 

拟合效果如下:


总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

python距离测量的方法

之所以写这个,其实就是希望能对距离有一些概念,当然这个也是很基础的,不过千里之行始于足下嘛,各种路径算法,比如a*什么的都会用到这个 距离测量有三种方式 1、欧式距离,这个是最常用的距离...

Python使用paramiko操作linux的方法讲解

paramiko介绍 paramiko是一个基于python编写的、使用ssh协议的模块,跟xshell和xftp功能类似,支持加密与认证,可以上传下载和访问服务器的文件。 可以利用pa...

Python GUI编程完整示例

Python GUI编程完整示例

本文实例讲述了Python GUI编程。分享给大家供大家参考,具体如下: import os from time import sleep from tkinter import *...

python批量解压zip文件的方法

这是一个用python写解压大量zip脚本的说明,本人新手一个,希望能对各位有所启发。 首先要注意的,在运行自己的脚本之前一定先备份或者复制出一些样本进行测试,不然出错会很麻烦; 之后我...

python 将数据保存为excel的xls格式(实例讲解)

python提供一个库 xlwt ,可以将一些数据 写入excel表格中,十分的方便。贴使用事例如下。 #引入xlwt模块(提前pip下载好) import xlwt #使用wor...