机器学习python实战之手写数字识别

yipeiwu_com6年前Python基础

看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容——手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法。

我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits。文本文件中是0~9的数字,但是是用二值图表示出来的,如图。我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能。

首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以我们可以将其转化为1*1024的向量。具体代码实现如下:

def img2vector(filename):
  imgVec = zeros((1,1024))
  file = open(filename)
  for i in range(32):
    lines = file.readline()
    for j in range(32):
      imgVec[0,32*i+j] = lines[j]
  return imgVec

实现了图片到向量的转化之后,我们就可以对测试文件中的内容进行识别了。这里的识别我们可以使用上一篇中的自定义函数classify0,这个函数的第一个参数是测试向量,第二个参数是训练数据集,第三个参数是训练集的标签。所以,我们首先需要将训练数据集转化为(1934*1024)的矩阵,1934这里是训练集的组数即trainingDigits目录下的文件数,其对应的标签转化为(1*1934)的向量。之后要编写的代码就是对测试数据集中的每个文本文件进行识别,也就是需要将每个文件都转化成一个(1*1024)的向量,再传入classify0函数的第一个形参。整体代码如下:

def handWriteNumClassTest():
  NumLabels = []
  TrainingDirfile = listdir(r'D:\ipython\num_recognize\trainingDigits')#文件目录
  L = len(TrainingDirfile)  #该目录中有多少文件
  TrainMat = zeros((L,1024))
  for i in range(L):
    file_n = TrainingDirfile[i]
    fileName = file_n.split('.')[0]
    ClassName = int(file_n.split('_')[0])
    NumLabels.append(ClassName)
    TrainMat[i,:] = img2vector(r'D:\ipython\num_recognize\trainingDigits\%s'%file_n)
  TestfileDir = listdir(r'D:\ipython\num_recognize\testDigits')
  error_cnt = 0.0
  M = len(TestfileDir)
  for j in range(M):
    Testfile = TestfileDir[j]
    TestfileName = Testfile.split('.')[0]
    TestClassName = int(Testfile.split('_')[0])
    TestVector = img2vector(r'D:\ipython\num_recognize\testDigits\%s'%Testfile)
    result = classify0(TestVector,TrainMat,NumLabels,3)
    print('the result is %d,the real answer is %d\n'%(result,TestClassName))
    if result!=TestClassName:
      error_cnt+=1
  print('the total num of errors is %f\n'%error_cnt)
  print('the error rate is %f\n'%(error_cnt/float(M)))

这里需要首先导入listdir方法,from os import listdir,它可以列出给定目录的文件名。对于测试的每个文件,如果识别的分类结果跟真实结果不一样,则错误数+1,最终用错误数/测试总数 来表示该模型的性能。下面给出结果

这里测试的总共946个项目中,一共有10个出现了错误,出错率为1%,这个性能还是可以接受的。有了上一篇内容的理解,这篇就简单多了吧!

训练数据集和测试集文件下载

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解pandas安装若干异常及解决方案总结

详解pandas安装若干异常及解决方案总结

在为Python安装第三方工具pandas出现了若干问题。 当我在cmd命令环境输入pip install pandas准备安装pandas时,出现了错误提示:Microsoft Vis...

python如何通过protobuf实现rpc

python如何通过protobuf实现rpc

由于项目组现在用的rpc是基于google protobuf rpc协议实现的,所以花了点时间了解下protobuf rpc。rpc对于做分布式系统的人来说肯定不陌生,对于rpc不了解的...

感知器基础原理及python实现过程详解

感知器基础原理及python实现过程详解

简单版本,按照李航的《统计学习方法》的思路编写 数据采用了著名的sklearn自带的iries数据,最优化求解采用了SGD算法。 预处理增加了标准化操作。 ''' perceptr...

Window 64位下python3.6.2环境搭建图文教程

Window 64位下python3.6.2环境搭建图文教程

python3.6.2环境安装配置图文教程,具体如下 一、需要下载的软件 》python3.6.2.exe (也可以选择更新的版本) ---- -网址 》Anaconda3-4.4.0...

Python 快速实现CLI 应用程序的脚手架

Python 快速实现CLI 应用程序的脚手架

今天跟大家分享一下如何快速实现一个Python CLI应用程序的脚手架,之所以会做这个是因为当时需要做一个运维的小工具希望用命令行的方式来使用,但是搜遍网上很多资料都没有系统讲解从开发、...