机器学习python实战之手写数字识别

yipeiwu_com6年前Python基础

看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容——手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法。

我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits。文本文件中是0~9的数字,但是是用二值图表示出来的,如图。我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能。

首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以我们可以将其转化为1*1024的向量。具体代码实现如下:

def img2vector(filename):
  imgVec = zeros((1,1024))
  file = open(filename)
  for i in range(32):
    lines = file.readline()
    for j in range(32):
      imgVec[0,32*i+j] = lines[j]
  return imgVec

实现了图片到向量的转化之后,我们就可以对测试文件中的内容进行识别了。这里的识别我们可以使用上一篇中的自定义函数classify0,这个函数的第一个参数是测试向量,第二个参数是训练数据集,第三个参数是训练集的标签。所以,我们首先需要将训练数据集转化为(1934*1024)的矩阵,1934这里是训练集的组数即trainingDigits目录下的文件数,其对应的标签转化为(1*1934)的向量。之后要编写的代码就是对测试数据集中的每个文本文件进行识别,也就是需要将每个文件都转化成一个(1*1024)的向量,再传入classify0函数的第一个形参。整体代码如下:

def handWriteNumClassTest():
  NumLabels = []
  TrainingDirfile = listdir(r'D:\ipython\num_recognize\trainingDigits')#文件目录
  L = len(TrainingDirfile)  #该目录中有多少文件
  TrainMat = zeros((L,1024))
  for i in range(L):
    file_n = TrainingDirfile[i]
    fileName = file_n.split('.')[0]
    ClassName = int(file_n.split('_')[0])
    NumLabels.append(ClassName)
    TrainMat[i,:] = img2vector(r'D:\ipython\num_recognize\trainingDigits\%s'%file_n)
  TestfileDir = listdir(r'D:\ipython\num_recognize\testDigits')
  error_cnt = 0.0
  M = len(TestfileDir)
  for j in range(M):
    Testfile = TestfileDir[j]
    TestfileName = Testfile.split('.')[0]
    TestClassName = int(Testfile.split('_')[0])
    TestVector = img2vector(r'D:\ipython\num_recognize\testDigits\%s'%Testfile)
    result = classify0(TestVector,TrainMat,NumLabels,3)
    print('the result is %d,the real answer is %d\n'%(result,TestClassName))
    if result!=TestClassName:
      error_cnt+=1
  print('the total num of errors is %f\n'%error_cnt)
  print('the error rate is %f\n'%(error_cnt/float(M)))

这里需要首先导入listdir方法,from os import listdir,它可以列出给定目录的文件名。对于测试的每个文件,如果识别的分类结果跟真实结果不一样,则错误数+1,最终用错误数/测试总数 来表示该模型的性能。下面给出结果

这里测试的总共946个项目中,一共有10个出现了错误,出错率为1%,这个性能还是可以接受的。有了上一篇内容的理解,这篇就简单多了吧!

训练数据集和测试集文件下载

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Flask-Cache缓存实现给Flask提速的方法详解

本文实例讲述了使用Flask-Cache缓存实现给Flask提速的方法。分享给大家供大家参考,具体如下: Django里面可以很方便的应用缓存,那Flask里面没准备这么周全怎么办?自己...

python安装virtualenv虚拟环境步骤图文详解

python安装virtualenv虚拟环境步骤图文详解

一、安装virtualenv 点击左下角最边上菜单栏输入cmd,打开命令行 2.根据版本的不同输入命令pip install virtualenv(或者pip3 install vir...

Python3.4 splinter(模拟填写表单)使用方法

如下所示: from splinter.browser import Browser b = Browser('chrome') url = 'https://kyfw.12...

Windows下Python2与Python3两个版本共存的方法详解

Windows下Python2与Python3两个版本共存的方法详解

前言 一向用Python 3,最近研究微信公众号开发,各云平台只支持Python 2.7,想用其他版本需要自己搭建环境。而网上又搜不到Python 3开发微信公众号的资料。暂打算先使用P...

分享一下Python数据分析常用的8款工具

分享一下Python数据分析常用的8款工具

Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。Python可用于数据分析,但其单纯依赖Python本身...