机器学习python实战之手写数字识别

yipeiwu_com6年前Python基础

看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容——手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法。

我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits。文本文件中是0~9的数字,但是是用二值图表示出来的,如图。我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能。

首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以我们可以将其转化为1*1024的向量。具体代码实现如下:

def img2vector(filename):
  imgVec = zeros((1,1024))
  file = open(filename)
  for i in range(32):
    lines = file.readline()
    for j in range(32):
      imgVec[0,32*i+j] = lines[j]
  return imgVec

实现了图片到向量的转化之后,我们就可以对测试文件中的内容进行识别了。这里的识别我们可以使用上一篇中的自定义函数classify0,这个函数的第一个参数是测试向量,第二个参数是训练数据集,第三个参数是训练集的标签。所以,我们首先需要将训练数据集转化为(1934*1024)的矩阵,1934这里是训练集的组数即trainingDigits目录下的文件数,其对应的标签转化为(1*1934)的向量。之后要编写的代码就是对测试数据集中的每个文本文件进行识别,也就是需要将每个文件都转化成一个(1*1024)的向量,再传入classify0函数的第一个形参。整体代码如下:

def handWriteNumClassTest():
  NumLabels = []
  TrainingDirfile = listdir(r'D:\ipython\num_recognize\trainingDigits')#文件目录
  L = len(TrainingDirfile)  #该目录中有多少文件
  TrainMat = zeros((L,1024))
  for i in range(L):
    file_n = TrainingDirfile[i]
    fileName = file_n.split('.')[0]
    ClassName = int(file_n.split('_')[0])
    NumLabels.append(ClassName)
    TrainMat[i,:] = img2vector(r'D:\ipython\num_recognize\trainingDigits\%s'%file_n)
  TestfileDir = listdir(r'D:\ipython\num_recognize\testDigits')
  error_cnt = 0.0
  M = len(TestfileDir)
  for j in range(M):
    Testfile = TestfileDir[j]
    TestfileName = Testfile.split('.')[0]
    TestClassName = int(Testfile.split('_')[0])
    TestVector = img2vector(r'D:\ipython\num_recognize\testDigits\%s'%Testfile)
    result = classify0(TestVector,TrainMat,NumLabels,3)
    print('the result is %d,the real answer is %d\n'%(result,TestClassName))
    if result!=TestClassName:
      error_cnt+=1
  print('the total num of errors is %f\n'%error_cnt)
  print('the error rate is %f\n'%(error_cnt/float(M)))

这里需要首先导入listdir方法,from os import listdir,它可以列出给定目录的文件名。对于测试的每个文件,如果识别的分类结果跟真实结果不一样,则错误数+1,最终用错误数/测试总数 来表示该模型的性能。下面给出结果

这里测试的总共946个项目中,一共有10个出现了错误,出错率为1%,这个性能还是可以接受的。有了上一篇内容的理解,这篇就简单多了吧!

训练数据集和测试集文件下载

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现批量修改图片格式和尺寸

本文实例为大家分享了python批量处理图片的具体代码,供大家参考,具体内容如下 公司的一个项目要求把所有4096x4096的图片全部转化成2048x2048的图片,这种批量转换图片大...

详解Python的数据库操作(pymysql)

使用原生SQL语句进行对数据库操作,可完成数据库表的建立和删除,及数据表内容的增删改查操作等。其可操作性很强,如可以直接使用“show databases”、“show tables”等...

Python 的内置字符串方法小结

字符串处理是非常常用的技能,但 Python 内置字符串方法太多,常常遗忘,为了便于快速参考,特地依据 Python 3.5.1 给每个内置方法写了示例并进行了归类,便于大家索引。 P...

Python高级应用实例对比:高效计算大文件中的最长行的长度

前2种方法主要用到了列表解析,性能稍差,而最后一种使用的时候生成器表达式,相比列表解析,更省内存 列表解析和生成器表达式很相似: 列表解析 [expr for iter_var in i...

python3+PyQt5+Qt Designer实现堆叠窗口部件

python3+PyQt5+Qt Designer实现堆叠窗口部件

本文是对《Python Qt GUI快速编程》的第9章的堆叠窗口例子Vehicle Rental用Python3+PyQt5+Qt Designer进行改写。 第一部分无借用Qt De...