python自动裁剪图像代码分享

yipeiwu_com5年前Python基础

本代码可以帮你自动剪切掉图片的边缘空白区域,如果你的图片有大片空白区域(只要是同一颜色形成一定的面积就认为是空白区域),下面的python代码可以帮你自动切除,如果是透明图像,会自动剪切大片的透明部分。

本代码需要PIL模块

pil相关介绍

PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。PIL功能非常强大,但API却非常简单易用。

由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。

import Image, ImageChops
 
def autoCrop(image,backgroundColor=None):
  '''Intelligent automatic image cropping.
    This functions removes the usless "white" space around an image.
    
    If the image has an alpha (tranparency) channel, it will be used
    to choose what to crop.
    
    Otherwise, this function will try to find the most popular color
    on the edges of the image and consider this color "whitespace".
    (You can override this color with the backgroundColor parameter) 
 
    Input:
      image (a PIL Image object): The image to crop.
      backgroundColor (3 integers tuple): eg. (0,0,255)
         The color to consider "background to crop".
         If the image is transparent, this parameters will be ignored.
         If the image is not transparent and this parameter is not
         provided, it will be automatically calculated.
 
    Output:
      a PIL Image object : The cropped image.
  '''
   
  def mostPopularEdgeColor(image):
    ''' Compute who's the most popular color on the edges of an image.
      (left,right,top,bottom)
       
      Input:
        image: a PIL Image object
       
      Ouput:
        The most popular color (A tuple of integers (R,G,B))
    '''
    im = image
    if im.mode != 'RGB':
      im = image.convert("RGB")
     
    # Get pixels from the edges of the image:
    width,height = im.size
    left  = im.crop((0,1,1,height-1))
    right = im.crop((width-1,1,width,height-1))
    top  = im.crop((0,0,width,1))
    bottom = im.crop((0,height-1,width,height))
    pixels = left.tostring() + right.tostring() + top.tostring() + bottom.tostring()
 
    # Compute who's the most popular RGB triplet
    counts = {}
    for i in range(0,len(pixels),3):
      RGB = pixels[i]+pixels[i+1]+pixels[i+2]
      if RGB in counts:
        counts[RGB] += 1
      else:
        counts[RGB] = 1  
     
    # Get the colour which is the most popular:    
    mostPopularColor = sorted([(count,rgba) for (rgba,count) in counts.items()],reverse=True)[0][1]
    return ord(mostPopularColor[0]),ord(mostPopularColor[1]),ord(mostPopularColor[2])
   
  bbox = None
   
  # If the image has an alpha (tranparency) layer, we use it to crop the image.
  # Otherwise, we look at the pixels around the image (top, left, bottom and right)
  # and use the most used color as the color to crop.
   
  # --- For transparent images -----------------------------------------------
  if 'A' in image.getbands(): # If the image has a transparency layer, use it.
    # This works for all modes which have transparency layer
    bbox = image.split()[list(image.getbands()).index('A')].getbbox()
  # --- For non-transparent images -------------------------------------------
  elif image.mode=='RGB':
    if not backgroundColor:
      backgroundColor = mostPopularEdgeColor(image)
    # Crop a non-transparent image.
    # .getbbox() always crops the black color.
    # So we need to substract the "background" color from our image.
    bg = Image.new("RGB", image.size, backgroundColor)
    diff = ImageChops.difference(image, bg) # Substract background color from image
    bbox = diff.getbbox() # Try to find the real bounding box of the image.
  else:
    raise NotImplementedError, "Sorry, this function is not implemented yet for images in mode '%s'." % image.mode
     
  if bbox:
    image = image.crop(bbox)
     
  return image
 
 
 
#范例:裁剪透明图片:
im = Image.open('myTransparentImage.png')
cropped = autoCrop(im)
cropped.show()
 
#范例:裁剪非透明图片
im = Image.open('myImage.png')
cropped = autoCrop(im)
cropped.show()

 总结

以上就是本文关于python自动裁剪图像代码分享的全部内容,希望对大家有所帮助。如有不足之处,欢迎留言指出。感兴趣的朋友可以继续参阅本站:

python图像常规操作

python好玩的项目—色情图片识别代码分享

Python生成数字图片代码分享

相关文章

python实现感知机线性分类模型示例代码

python实现感知机线性分类模型示例代码

前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。 通过梯度...

Python多线程实现同步的四种方式

临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区。 锁机制 thre...

简单讲解Python中的闭包

闭包并不是什么新奇的概念,它早在高级语言开始发展的年代就产生了。闭包(Closure)是词法闭包(Lexical Closure)的简称。对闭包的具体定义有很多种说法,这些说法大体可以分...

python中字典(Dictionary)用法实例详解

本文实例讲述了python中字典(Dictionary)用法。分享给大家供大家参考。具体分析如下: 字典(Dictionary)是一种映射结构的数据类型,由无序的“键-值对”组成。字典的...

Django框架封装外部函数示例

Django框架封装外部函数示例

本文实例讲述了Django框架封装外部函数。分享给大家供大家参考,具体如下: 需求:我们来模拟用户登录,验证是否输入正确的用户名和密码 1.构建登录表单 <form met...