python中Apriori算法实现讲解

yipeiwu_com6年前Python基础

本文主要给大家讲解了Apriori算法的基础知识以及Apriori算法python中的实现过程,以下是所有内容:

1. Apriori算法简介

Apriori算法是挖掘布尔关联规则频繁项集的算法。Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集。先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集集合L2,接着用L2找L3,知道找不到频繁K-项集,找到每个Lk需要一次数据库扫描。注意:频繁项集的所有非空子集也必须是频繁的。Apriori性质通过减少搜索空间,来提高频繁项集逐层产生的效率。Apriori算法由连接和剪枝两个步骤组成。

2. Apriori算法步骤

 根据一个实例来解释:下图是一个交易单,I1至I5可看作5种商品。下面通过频繁项集合来找出关联规则。

假设我们的最小支持度阈值为2,即支持度计数小于2的都要删除。

        

上表第一行(第一项交易)表示:I1和I2和I5一起被购买。

C1至L1的过程: 只需查看支持度是否高于阈值,然后取舍。上图C1中所有阈值都大于2,故L1中都保留。

L1至C2的过程分三步:

遍历产生L1中所有可能性组合,即(I1,I2)...(I4,I5 )    对便利产生的每个组合进行拆分,以保证频繁项集的所有非空子集也必须是频繁的。即对于(I1,I2)来说进行拆分为I1,I2.由于I1和I2在L1中都为频繁项,所以这一组合保留。对于剩下的C2根据原数据集中进行支持度计数

C2至L2的过程: 只需查看支持度是否高于阈值,然后取舍。

L2至C3的过程:

还是上面的步骤。首先生成(1,2,3)、(1,2,4)、(1,2,5)....为什么最后只剩(1,2,3)和(1,2,5)呢?因为剪枝过程:(1,2,4)拆分为(1,2)和(1,4)和(2,4).然而(1,4)在L2中不存在,即非频繁项。所有剪枝删除。然后对C3中剩下的组合进行计数。发现(1,2,3)和(1,2,5)的支持度2。迭代结束。

所以算法过程就是 Ck - Lk - Ck+1 的过程:

3.Apriori算法实现

# -*- coding: utf-8 -*-
"""
Created on Sat Dec 9 15:33:45 2017
@author: LPS
"""
import numpy as np
from itertools import combinations # 迭代工具
data = [[1,2,5], [2,4], [2,3], [1,2,4], [1,3], [2,3], [1,3], [1,2,3,5], [1,2,3]]
minsp = 2
d = []
for i in range(len(data)):
 d.extend(data[i])
new_d = list(set(d))
def satisfy(s, s_new, k): # 更新确实存在的L 
 e =[]
 ss_new =[]
 for i in range(len(s_new)):
  for j in combinations(s_new[i], k): # 迭代产生所有元素可能性组合
   e.append(list(j))
  if ([l for l in e if l not in s]) ==[] :
   ss_new.append(s_new[i])
  e = []
  return ss_new # 筛选满足条件的结果 
def count(s_new): # 返回narray格式的C
 num = 0
 C = np.copy(s_new)
 C = np.column_stack((C, np.zeros(C.shape[0])))
 for i in range(len(s_new)):
  for j in range(len(data)):
   if ([l for l in s_new[i] if l not in data[j]]) ==[] :
    num = num+1
  C[i,-1] = num
  num = 0   
 return C
def limit(L): # 删掉不满足阈值的C
 row = []
 for i in range(L.shape[0]):
  if L[i,-1] < minsp :
   row.append(i)
 L = np.delete(L, row, 0) 
 return L
def generate(L, k): # 实现由L至C的转换
 s = []
 for i in range(L.shape[0]):
  s.append(list(L[i,:-1]))
 s_new = []
# L = L.delete(L, -1, 1)
# l = L.shape[1]
 for i in range(L.shape[0]-1):
  for j in range(i+1, L.shape[0]):
   if (L[j,-2]>L[i,-2]):
    t = list(np.copy(s[i]))
    t.append(L[j,-2])
    s_new.append(t) # s_new为列表
    
 s_new = satisfy(s, s_new, k) 
 C = count(s_new)
 return C
# 初始的C与L
C = np.zeros([len(new_d), 2])
for i in range(len(new_d)):
 C[i:] = np.array([new_d[i], d.count(new_d[i])])
L = np.copy(C)
L = limit(L)
# 开始迭代
k = 1
while (np.max(L[:,-1]) > minsp):
 C = generate(L, k) # 由L产生C
 L = limit(C)  # 由C产生L
 k = k+1
# 对最终结果去重复
print((list(set([tuple(t) for t in L])))
# 结果为 [(1.0, 2.0, 3.0, 2.0), (1.0, 2.0, 5.0, 2.0)]

相关文章

Python第三方库的安装方法总结

Python 是一门优雅的语言,简洁的语法,强大的功能。当然丰富的第三方库,更能加速开发。那么问题来了,如何安装这些第三方库(包)呢? 安装第三方库的方式其实不多。下面就介绍一些技巧。...

python中将两组数据放在一起按照某一固定顺序shuffle的实例

有的时候需要将两组数据,比如特征和标签放在一起随机打乱, 但是又想记录这种打乱的顺序,那么该怎么做呢?下面是一个很好的方法: b = [1, 2,3, 4, 5,6 , 7,8 ,9...

PyTorch之图像和Tensor填充的实例

在PyTorch中可以对图像和Tensor进行填充,如常量值填充,镜像填充和复制填充等。在图像预处理阶段设置图像边界填充的方式如下: import vision.torchvisio...

详解将Django部署到Centos7全攻略

详解将Django部署到Centos7全攻略

Django部署到Cenos7需要安装大量的依赖包, 有很多坑需要踩, 这里是踩坑后探索出的标准化步骤 实验环境: 腾讯云centos7 用centos7.5镜像创建容器(这步操作按自己...

Python实现某论坛自动签到功能

1.[文件] DakeleSign.py ~ 4KB #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'popp...