python实现BackPropagation算法

yipeiwu_com6年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

基于Numpy.convolve使用Python实现滑动平均滤波的思路详解

​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据....

基于Python+Appium实现京东双十一自动领金币功能

基于Python+Appium实现京东双十一自动领金币功能

背景:做任务领金币的过程很无聊,而且每天都是重复同样的工作,非常符合自动化的定义; 工具:python,appium,Android 手机(我使用的是安卓6.0的),数据线一根; 开搞前...

pytorch多GPU并行运算的实现

Pytorch多GPU运行 设置可用GPU环境变量。例如,使用0号和1号GPU' os.environ["CUDA_VISIBLE_DEVICES"] = '0,1' 设置模型...

Python读取word文本操作详解

Python读取word文本操作详解

本文研究的主要问题时Python读取word文本操作,分享了相关概念和实现代码,具体如下。 一,docx模块 Python可以利用python-docx模块处理word文档,处理方式是面...

关于python中plt.hist参数的使用详解

关于python中plt.hist参数的使用详解

如下所示: matplotlib.pyplot.hist( x, bins=10, range=None, normed=False, weights=None, c...