python实现BackPropagation算法

yipeiwu_com6年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现对指定输入的字符串逆序输出的6种方法

对于一个给定的字符串,逆序输出,这个任务对于python来说是一种很简单的操作,毕竟强大的列表和字符串处理的一些列函数足以应付这些问题 了,今天总结了一下python中对于字符串的逆序输...

使用python实现ANN

使用python实现ANN

本文实例为大家分享了python实现ANN的具体代码,供大家参考,具体内容如下 1.简要介绍神经网络 神经网络是具有适应性的简单单元组成的广泛并行互联的网络。它的组织能够模拟生物神经系统...

Python制作微信好友背景墙教程(附完整代码)

Python制作微信好友背景墙教程(附完整代码)

引言 前段时间,微信朋友圈开始出现了一种晒照片新形式,微信好友墙,即在一张大图片中展示出自己的所有微信好友的头像。 效果如下图,出于隐私考虑,这里作了模糊处理。 是不是很炫,而且这还...

在Python中操作时间之strptime()方法的使用

 strptime()方法分析表示根据格式的时间字符串。返回值是一个struct_time所返回gmtime()或localtime()。 格式参数使用相同的指令使用strft...

python 控制语句

1比如python提倡简单实用的思想,它就没有switch语句,如果要实现switch语句的效果 的话可以通过2个方法来写把 (1)通过if elif 语句来实现 if 条件: … el...