python实现BackPropagation算法

yipeiwu_com6年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python统计字符串中指定字符出现次数的方法

本文实例讲述了python统计字符串中指定字符出现次数的方法。分享给大家供大家参考。具体如下: python统计字符串中指定字符出现的次数,例如想统计字符串中空格的数量 s = "C...

Python和C/C++交互的几种方法总结

Python和C/C++交互的几种方法总结

前言 python作为一门脚本语言,其好处是语法简单,很多东西都已经封装好了,直接拿过来用就行,所以实现同样一个功能,用Python写要比用C/C++代码量会少得多。但是优点也必然也伴随...

Python正则匹配判断手机号是否合法的方法

Python正则匹配判断手机号是否合法的方法

正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(英语:Regular Expression,在代码中常简写为regex、regexp或RE),是计算机科学的一...

django多文件上传,form提交,多对多外键保存的实例

需求: 需要实现一个用户反馈的接口,用户通过接口提交: 1.一段文字 2. 一个log文件 3. 多个图片 找了很多ModelForm,DRF-Serializer的资料,都没找到简单好...

python实现从一组颜色中找出与给定颜色最接近颜色的方法

本文实例讲述了python实现从一组颜色中找出与给定颜色最接近颜色的方法。分享给大家供大家参考。具体分析如下: 这段代码非常有用,可以找到指定颜色相似的颜色,比如有一组8个颜色,现在给定...