python实现BackPropagation算法

yipeiwu_com5年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python切图九宫格的实现方法

Python切图九宫格的实现方法

本文介绍了Python切图九宫格的实现方法,分享给大家,具体如下 # -*- coding: utf-8 -*- ''' 将一张图片填充为正方形后切为9张图 ''' from PI...

Python 输出时去掉列表元组外面的方括号与圆括号的方法

Python 输出时去掉列表元组外面的方括号与圆括号的方法

在这可以用join()函数 'x'.join(y),x可以是任意分割字符,y是列表或元组。以列表为例,可以将列表中的每一个元素两头的引号给去除,同时,元素与元素之间以字符‘x'作为分割标...

python访问纯真IP数据库的代码

核心代码: #!/usr/bin/env python # -*- coding: utf-8 -*- from bisect import bisect _LIST1,...

python插入数据到列表的方法

本文实例讲述了python插入数据到列表的方法。分享给大家供大家参考。具体如下: list = ["red","green"] list.insert(1,"blue") asser...

python 多线程串行和并行的实例

如下所示: #coding=utf-8 import threading import time import cx_Oracle from pprint import pprint...