python利用OpenCV2实现人脸检测

yipeiwu_com6年前Python基础

最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别。由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改)

import cv2
import numpy as np
cv2.namedWindow("test")#命名一个窗口
cap=cv2.VideoCapture(1)#打开1号摄像头
success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身
color = (0,0,0)#设置人脸框的颜色
classfier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")#定义分类器
while success:
  success, frame = cap.read()
  size=frame.shape[:2]#获得当前桢彩色图像的大小
  image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
  image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改)
  cv2.equalizeHist(image, image)#灰度图像进行直方图等距化
  #如下三行是设定最小图像的大小
  divisor=8
  h, w = size
  minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数
  faceRects = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测
  if len(faceRects)>0:#如果人脸数组长度大于0
    for faceRect in faceRects: #对每一个人脸画矩形框
        x, y, w, h = faceRect
        cv2.rectangle(frame, (x, y), (x+w, y+h), color)
  cv2.imshow("test", frame)#显示图像
  key=cv2.waitKey(10)
  c = chr(key & 255)
  if c in ['q', 'Q', chr(27)]:
    break
cv2.destroyWindow("test")

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对Python中画图时候的线类型详解

对Python中画图时候的线类型详解

在Python中用matplotlib画图的时候,为了区分曲线的类型,给曲线上面加一些标识或者颜色。以下是颜色和标识的汇总。 颜色(color 简写为 c): 蓝色: 'b' (blue...

通过python实现弹窗广告拦截过程详解

通过python实现弹窗广告拦截过程详解

原理 这里实现的弹窗拦截,是程序不断的监视电脑屏幕,当出现需要拦截的窗口时,自动控制屏幕点击事件关闭。第一步:将需要关闭弹窗的点击位置截图。 直接上代码 while True:...

django使用admin站点上传图片的实例

Django有提供文件系统支持,在Admin站点中可以轻松上传图片。使用Admin站点保存图片,需要安装Python的图片操作包 pip install Pillow 1 配置...

python实现下载文件的三种方法

Python开发中时长遇到要下载文件的情况,最常用的方法就是通过Http利用urllib或者urllib2模块。 当然你也可以利用ftplib从ftp站点下载文件。此外Python还提...

在 Jupyter 中重新导入特定的 Python 文件(场景分析)

在 Jupyter 中重新导入特定的 Python 文件(场景分析)

Jupyter 是数据分析领域非常有名的开发环境,使用 Jupyter 写数据分析相关的代码会大大节约开发时间。 设想这样一个场景:别的部门的同事传给你一个数据分析的模块,用于实现对数据...