python利用OpenCV2实现人脸检测

yipeiwu_com6年前Python基础

最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别。由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改)

import cv2
import numpy as np
cv2.namedWindow("test")#命名一个窗口
cap=cv2.VideoCapture(1)#打开1号摄像头
success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身
color = (0,0,0)#设置人脸框的颜色
classfier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")#定义分类器
while success:
  success, frame = cap.read()
  size=frame.shape[:2]#获得当前桢彩色图像的大小
  image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
  image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改)
  cv2.equalizeHist(image, image)#灰度图像进行直方图等距化
  #如下三行是设定最小图像的大小
  divisor=8
  h, w = size
  minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数
  faceRects = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测
  if len(faceRects)>0:#如果人脸数组长度大于0
    for faceRect in faceRects: #对每一个人脸画矩形框
        x, y, w, h = faceRect
        cv2.rectangle(frame, (x, y), (x+w, y+h), color)
  cv2.imshow("test", frame)#显示图像
  key=cv2.waitKey(10)
  c = chr(key & 255)
  if c in ['q', 'Q', chr(27)]:
    break
cv2.destroyWindow("test")

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 20行简单实现有道在线翻译的详解

Python 20行简单实现有道在线翻译的详解

简介 主要是尝试简单的使用pyhton的爬虫功能,于是使用有道进行尝试,并没有进行深入的诸如相关api的调用。 以下是需要的POST数据 代码 以下是相关部分的代码: import...

在django admin中添加自定义视图的例子

django admin提供了完善的用户管理和数据模型管理,方便实用。研究了一下在admin里面添加自己的页面。 在admin.py里继承django.contrib.admin.Mod...

python [:3] 实现提取数组中的数

搜索答案搜索不到,自己试了一把. 首先生成一维数组 a =np.array([1,2,3,4,5,6,7,8,9]) >>> print a [1 2 3 4 5...

Python占用的内存优化教程

概述 如果程序处理的数据比较多、比较复杂,那么在程序运行的时候,会占用大量的内存,当内存占用到达一定的数值,程序就有可能被操作系统终止,特别是在限制程序所使用的内存大小的场景,更容易发...

Python对文件操作知识汇总

打开文件 操作文件 1打开文件时,需要指定文件路径和打开方式 打开方式: r:只读 w:只写 a:追加 “+”表示可以同时读写某个文件 r+:读写 w+:写读 a+:同a U"表示在读取...