python利用OpenCV2实现人脸检测

yipeiwu_com6年前Python基础

最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别。由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改)

import cv2
import numpy as np
cv2.namedWindow("test")#命名一个窗口
cap=cv2.VideoCapture(1)#打开1号摄像头
success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身
color = (0,0,0)#设置人脸框的颜色
classfier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")#定义分类器
while success:
  success, frame = cap.read()
  size=frame.shape[:2]#获得当前桢彩色图像的大小
  image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
  image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改)
  cv2.equalizeHist(image, image)#灰度图像进行直方图等距化
  #如下三行是设定最小图像的大小
  divisor=8
  h, w = size
  minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数
  faceRects = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测
  if len(faceRects)>0:#如果人脸数组长度大于0
    for faceRect in faceRects: #对每一个人脸画矩形框
        x, y, w, h = faceRect
        cv2.rectangle(frame, (x, y), (x+w, y+h), color)
  cv2.imshow("test", frame)#显示图像
  key=cv2.waitKey(10)
  c = chr(key & 255)
  if c in ['q', 'Q', chr(27)]:
    break
cv2.destroyWindow("test")

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python并发编程多进程 互斥锁原理解析

运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同...

在Django中URL正则表达式匹配的方法

在Django中URL正则表达式匹配的方法

Django框架中的URL分发采用正则表达式匹配来进行,以下是正则表达式的基本规则: 官方演示代码: from django.conf.urls import url from...

python可视化实现KNN算法

python可视化实现KNN算法

简介 这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法。 需要提前安装python的Numpy和Matplotlib包。 KNN–最近邻分类...

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

图像处理工具——灰度直方图 灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。 例子:矩阵 图片来自网络,侵删! 上面图片的灰度直方图 p...

python实现人脸识别代码

python实现人脸识别代码

从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别。程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特...