python利用OpenCV2实现人脸检测

yipeiwu_com6年前Python基础

最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别。由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改)

import cv2
import numpy as np
cv2.namedWindow("test")#命名一个窗口
cap=cv2.VideoCapture(1)#打开1号摄像头
success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身
color = (0,0,0)#设置人脸框的颜色
classfier=cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")#定义分类器
while success:
  success, frame = cap.read()
  size=frame.shape[:2]#获得当前桢彩色图像的大小
  image=np.zeros(size,dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
  image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#将当前桢图像转换成灰度图像(这里有修改)
  cv2.equalizeHist(image, image)#灰度图像进行直方图等距化
  #如下三行是设定最小图像的大小
  divisor=8
  h, w = size
  minSize=(int(w/divisor), int(h/divisor))#这里加了一个取整函数
  faceRects = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,minSize)#人脸检测
  if len(faceRects)>0:#如果人脸数组长度大于0
    for faceRect in faceRects: #对每一个人脸画矩形框
        x, y, w, h = faceRect
        cv2.rectangle(frame, (x, y), (x+w, y+h), color)
  cv2.imshow("test", frame)#显示图像
  key=cv2.waitKey(10)
  c = chr(key & 255)
  if c in ['q', 'Q', chr(27)]:
    break
cv2.destroyWindow("test")

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

谈谈python中GUI的选择

尽管内容可能有些老,但是没有关系,对于想深入Python开发的工作者,在选择GUI开发包,乃至可视化IDE方面都还有相当的借鉴意义。 Python最大的特点就在于她的快速开发功能。作为一...

Django JWT Token RestfulAPI用户认证详解

Django JWT Token RestfulAPI用户认证详解

一般情况下我们Django默认的用户系统是满足不了我们的需求的,那么我们会对他做一定的扩展 创建用户项目 python manage.py startapp users 添加项目a...

python 实现归并排序算法

理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[...

Django框架反向解析操作详解

Django框架反向解析操作详解

本文实例讲述了Django框架反向解析操作。分享给大家供大家参考,具体如下: 1. 定义: 随着功能的增加会出现更多的视图,可能之前配置的正则表达式不够准确,于是就要修改正则表达式,但是...

python科学计算之scipy——optimize用法

写在前面 SciPy的optimize模块提供了许多数值优化算法,下面对其中的一些记录。 非线性方程组求解 SciPy中对非线性方程组求解是fslove()函数,它的调用形式一般为fsl...