Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com5年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python导入csv文件出现SyntaxError问题分析

背景 np.loadtxt()用于从文本加载数据。 文本文件中的每一行必须含有相同的数据。 *** loadtxt(fname,dtype=<class'float'>,co...

django rest framework vue 实现用户登录详解

django rest framework vue 实现用户登录详解

后端代码就不介绍了,可以参考 django rest framework 实现用户登录认证 这里介绍一下前端代码,和前后端的联调过程 在components下新建login.vue 文件...

Python模拟自动存取款机的查询、存取款、修改密码等操作

Python模拟自动存取款机的查询、存取款、修改密码等操作

1.工作流程 2.模拟自动存取款机的操作 代码如下: import msvcrt, sys, os #定义用星号隐藏密码输入的函数 def psw_input(): li =...

使用python编写android截屏脚本双击运行即可

测试的过程中经常需要截取屏幕,通常的做法是使用手机自带的截屏功能,然后将截屏文件复制出来,这种方法的优点是不需要连接数据线就可截屏,缺点则是生成的截屏文件命名是随机命名的,复制出来也比较...

python定位xpath 节点位置的方法

chrome 右键有copy xpath地址 但是有些时候获取的可能不对 可以自己用代码验证一下 如果还是不行 可以考虑从源码当中取出来 趁热打铁,使用前一篇文章中 XPath 节点来定...