Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com6年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python判断完全平方数的方法

如下所示: # -*- coding: utf-8 -*- #简述:一个整数,它加上100和加上268后都是一个完全平方数 #提问:请问该数是多少? from math imp...

Python+django实现文件下载

(1)方法一、直接用a标签的href+数据库中文件地址,即可下载。缺点:word excel是直接弹框下载,对于image txt 等文件的下载方式是直接在新页面打开。 (2)方法二、在...

使用EduBlock轻松学习Python编程

使用EduBlock轻松学习Python编程

如果你正在寻找一种方法将你的学生(或你自己)从使用 Scratch 编程转移到学习 Python,我建议你了解一下 EduBlocks。它为 Py...

使用Python做定时任务及时了解互联网动态

使用Python做定时任务及时了解互联网动态

前言 本人因为比较喜欢看漫画和动漫, 所以总会遇到一些问题, 因为订阅的漫画或者动漫太多, 总会忘记自己看到那一章节或者不知道什么时候更新. 故会有这么一个需求, 想记录自己想看的漫画或...

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式.光流方法计算在t和 t+Δtt+Δt时刻拍摄的两个图像帧之间的每个像素的运动位置。这些方法被称为差分,因为它们基于图...