Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com6年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现网页截图(PyQT5)过程解析

方案说明 功能要求:实现网页加载后将页面截取成长图片 涉及模块:PyQT5 PIL 逻辑说明: 1:完成窗口设置,利用PyQT5 QWebEngineView加载网页地址,待网页加...

Django框架搭建的简易图书信息网站案例

本文实例讲述了Django框架搭建的简易图书信息网站。分享给大家供大家参考,具体如下: 创建Django项目,将数据库改为mysql,修改项目的urls.py文件 创建一个新应用,在应用...

python 批量添加的button 使用同一点击事件的方法

python 批量添加的button 使用同一点击事件根据传递的参数进行区分。 def clear_text(): print '我只是个清空而已' def clear_tex...

python dict remove数组删除(del,pop)

比如代码 binfo = {'name':'jay','age':20,'python':'haha'} print binfo.pop('name')#pop方法删除键,并且返回键对应...

用Python的urllib库提交WEB表单

复制代码 代码如下:class EntryDemo( Frame ): """Demonstrate Entrys and Event binding""" chosenrange =...