python实现基于SVM手写数字识别功能

yipeiwu_com5年前Python基础

本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下

1、SVM手写数字识别

识别步骤:
(1)样本图像的准备。
(2)图像尺寸标准化:将图像大小都标准化为8*8大小。
(3)读取未知样本图像,提取图像特征,生成图像特征组。
(4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。

识别代码:

#!/usr/bin/env python
import numpy as np
import mlpy
import cv2
print 'loading ...'

def getnumc(fn):
 '''返回数字特征'''
 fnimg = cv2.imread(fn) #读取图像
 img=cv2.resize(fnimg,(8,8)) #将图像大小调整为8*8
 alltz=[]
 for now_h in xrange(0,8):
  xtz=[]  
  for now_w in xrange(0,8):
   b = img[now_h,now_w,0]
   g = img[now_h,now_w,1]
   r = img[now_h,now_w,2]
   btz=255-b
   gtz=255-g
   rtz=255-r
   if btz>0 or gtz>0 or rtz>0:
    nowtz=1
   else:
    nowtz=0
   xtz.append(nowtz) 
  alltz+=xtz
 return alltz
 
#读取样本数字
x=[]
y=[]
for numi in xrange(1,10):
 for numij in xrange(1,5):
  fn='nums/'+str(numi)+'-'+str(numij)+'.png'
  x.append(getnumc(fn))
  y.append(numi)
 
x=np.array(x)
y=np.array(y)
svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10)
svm.learn(x, y)
print u"训练样本测试:"
print svm.pred(x)
print u"未知图像测试:"
for iii in xrange (1,10):
 testfn= 'nums/test/'+str(iii)+'-test.png'
 testx=[]
 testx.append(getnumc(testfn))
 print  
 print testfn+":",
 print svm.pred(testx)

样本:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

谈谈如何手动释放Python的内存

在上篇博客中,提到了对一个脚本进行的多次优化。当时以为已经优化得差不多了,但是当测试人员测试时,我才发现,踩到了Python的一个大坑。 在上文的优化中,对每500个用户,会进行一些计算...

详谈Numpy中数组重塑、合并与拆分方法

1.数组重塑 1.1一维数组转变成二维数组 通过reshape( )函数即可实现,假设data是numpy.array类型的一维数组array([0, 1, 2, 3, 4, 5, 6,...

Python 、Pycharm、Anaconda三者的区别与联系、安装过程及注意事项

Python 、Pycharm、Anaconda三者的区别与联系、安装过程及注意事项

1、致欢迎词 我将详细讲述在学Python初期的各种手忙脚乱的问题的解决,通过这些步骤的操作,让你的注意力集中在Python的语法上以及后面利用Python所解决的项目问题上。而我自己作...

500行Python代码打造刷脸考勤系统

500行Python代码打造刷脸考勤系统

需求分析 “员工刷脸考勤”系统,采用Python语言开发,可以通过摄像头添加员工面部信息,这里就涉及到两个具体的个问题,一个是应该以什么样的数据来标识每一个员工的面部信息,二是持久化地保...

Python内建函数之raw_input()与input()代码解析

这两个均是 python 的内建函数,通过读取控制台的输入与用户实现交互。但他们的功能不尽相同。举两个小例子。 >>> raw_input_A = raw_inp...