python实现基于SVM手写数字识别功能

yipeiwu_com5年前Python基础

本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下

1、SVM手写数字识别

识别步骤:
(1)样本图像的准备。
(2)图像尺寸标准化:将图像大小都标准化为8*8大小。
(3)读取未知样本图像,提取图像特征,生成图像特征组。
(4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。

识别代码:

#!/usr/bin/env python
import numpy as np
import mlpy
import cv2
print 'loading ...'

def getnumc(fn):
 '''返回数字特征'''
 fnimg = cv2.imread(fn) #读取图像
 img=cv2.resize(fnimg,(8,8)) #将图像大小调整为8*8
 alltz=[]
 for now_h in xrange(0,8):
  xtz=[]  
  for now_w in xrange(0,8):
   b = img[now_h,now_w,0]
   g = img[now_h,now_w,1]
   r = img[now_h,now_w,2]
   btz=255-b
   gtz=255-g
   rtz=255-r
   if btz>0 or gtz>0 or rtz>0:
    nowtz=1
   else:
    nowtz=0
   xtz.append(nowtz) 
  alltz+=xtz
 return alltz
 
#读取样本数字
x=[]
y=[]
for numi in xrange(1,10):
 for numij in xrange(1,5):
  fn='nums/'+str(numi)+'-'+str(numij)+'.png'
  x.append(getnumc(fn))
  y.append(numi)
 
x=np.array(x)
y=np.array(y)
svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10)
svm.learn(x, y)
print u"训练样本测试:"
print svm.pred(x)
print u"未知图像测试:"
for iii in xrange (1,10):
 testfn= 'nums/test/'+str(iii)+'-test.png'
 testx=[]
 testx.append(getnumc(testfn))
 print  
 print testfn+":",
 print svm.pred(testx)

样本:

结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python修改txt文件中的某一项方法

python修改txt文件中的某一项方法

在做task中,需要将TXT文本中的某一项注释修改,但是python对txt文本只有写入和读取两种操作。 我采用的方法是: 1.读取txt文件,将每一行数据,加入新建立的list中。 2...

用Python实现通过哈希算法检测图片重复的教程

用Python实现通过哈希算法检测图片重复的教程

Iconfinder 是一个图标搜索引擎,为设计师、开发者和其他创意工作者提供精美图标,目前托管超过 34 万枚图标,是全球最大的付费图标库。用户也可以在 Iconfinder 的交易板...

redis之django-redis的简单缓存使用

本文介绍了redis之django-redis的简单缓存使用,分享给大家,具体如下: 自定义连接池 这种方式跟普通py文件操作redis一样,代码如下: views.py impo...

TensorFlow 合并/连接数组的方法

如下所示: import tensorflow as tf a = tf.Variable([4,5,6]) b = tf.Variable([1,2,3]) c = tf.co...

浅谈python中的getattr函数 hasattr函数

hasattr(object, name) 作用:判断对象object是否包含名为name的特性(hasattr是通过调用getattr(ojbect, name)是否抛出异常来实现的...