Python+matplotlib+numpy实现在不同平面的二维条形图

yipeiwu_com6年前Python基础

在不同平面上绘制二维条形图。

本实例制作了一个3d图,其中有二维条形图投射到平面y=0,y=1,等。

演示结果:

完整代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)


fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
  # Generate the random data for the y=k 'layer'.
  xs = np.arange(20)
  ys = np.random.rand(20)

  # You can provide either a single color or an array with the same length as
  # xs and ys. To demonstrate this, we color the first bar of each set cyan.
  cs = [c] * len(xs)
  cs[0] = 'c'

  # Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
  ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)

plt.show()

脚本运行时间:(0分0.063秒)

总结

以上就是本文关于Python+matplotlib+numpy实现在不同平面的二维条形图的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

python ddt实现数据驱动

ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试...

python计算最小优先级队列代码分享

复制代码 代码如下:# -*- coding: utf-8 -*- class Heap(object):     @classmethod &n...

利用 Monkey 命令操作屏幕快速滑动

利用 Monkey 命令操作屏幕快速滑动

一、Monkey测试简介 Monkey测试是Android平台自动化测试的一种手段,通过Monkey程序模拟用户触摸屏幕、滑动Trackball、按键等操作来对设备上的程序进行压力测试,...

python3中dict(字典)的使用方法示例

一、clear(清空字典内容) stu = { 'num1':'Tom', 'num2':'Lucy', 'num3':'Sam', } print(stu.clear...

python读取浮点数和读取文本文件示例

从文本文件中读入浮点数据,是最常见的任务之一,python没有scanf这样的输入函数,但我们可以利用正规表达式从读入的字符串中提取出浮点数 复制代码 代码如下:import refp...