Python通过OpenCV的findContours获取轮廓并切割实例

yipeiwu_com5年前Python基础

1 获取轮廓

OpenCV2获取轮廓主要是用cv2.findContours

import numpy as np
import cv2

im = cv2.imread('test.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

其中,findContours的第二个函数很重要,主要分为 cv2.RETR_LIST, cv2.RETR_TREE, cv2.RETR_CCOMP, cv2.RETR_EXTERNAL,具体含义可参考官方文档

2 画出轮廓

为了看到自己画了哪些轮廓,可以使用 cv2.boundingRect()函数获取轮廓的范围,即左上角原点,以及他的高和宽。然后用cv2.rectangle()方法画出矩形轮廓

for i in range(0,len(contours)): 
  x, y, w, h = cv2.boundingRect(contours[i])  
  cv2.rectangle(image, (x,y), (x+w,y+h), (153,153,0), 5) 

3切割轮廓

轮廓的切割主要是通过数组切片实现的,不过这里有一个小技巧:就是图片切割的w,h是宽和高,而数组讲的是行(row)和列(column)

所以,在切割图片时,数组的高和宽是反过来写的

  newimage=image[y+2:y+h-2,x+2:x+w-2] # 先用y确定高,再用x确定宽
      nrootdir=("E:/cut_image/")
      if not os.path.isdir(nrootdir):
        os.makedirs(nrootdir)
      cv2.imwrite( nrootdir+str(i)+".jpg",newimage) 
      print (i)

这样就可以把确定的轮廓都切割出来了。

总结

以上就是本文关于Python通过OpenCV的findContours获取轮廓并切割实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python+opencv轮廓检测代码解析

OpenCV-Python实现轮廓检测实例分析

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python面向对象之继承和组合用法实例分析

本文实例讲述了Python面向对象之继承和组合用法。分享给大家供大家参考,具体如下: 面向对象的组合用法 软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中...

Python导入txt数据到mysql的方法

本文实例讲述了Python导入txt数据到mysql的方法。分享给大家供大家参考。具体分析如下: 从TXT文本转换数据到MYSQL数据库,接触一段时间python了 第一次写东西 用的是...

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。 举个例子,栈就想一摞洗干净的盘子,你每次取一个新盘子,都是放在这一摞盘子的最...

对python中的for循环和range内置函数详解

对python中的for循环和range内置函数详解

如下所示: 1.for循环和range内置函数配合使用 range函数生成一个从零开始的列表, range(4)表示list:0123 range(1,11,2)表示从1开始到11-...

python创建属于自己的单词词库 便于背单词

python创建属于自己的单词词库 便于背单词

本文实例为大家分享了python创建单词词库的具体代码,供大家参考,具体内容如下 基本思路:以COCA两万单词表为基础,用python爬取金山词霸的单词词性,词义,音频分别存入sqlli...