Python通过OpenCV的findContours获取轮廓并切割实例

yipeiwu_com5年前Python基础

1 获取轮廓

OpenCV2获取轮廓主要是用cv2.findContours

import numpy as np
import cv2

im = cv2.imread('test.jpg')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

其中,findContours的第二个函数很重要,主要分为 cv2.RETR_LIST, cv2.RETR_TREE, cv2.RETR_CCOMP, cv2.RETR_EXTERNAL,具体含义可参考官方文档

2 画出轮廓

为了看到自己画了哪些轮廓,可以使用 cv2.boundingRect()函数获取轮廓的范围,即左上角原点,以及他的高和宽。然后用cv2.rectangle()方法画出矩形轮廓

for i in range(0,len(contours)): 
  x, y, w, h = cv2.boundingRect(contours[i])  
  cv2.rectangle(image, (x,y), (x+w,y+h), (153,153,0), 5) 

3切割轮廓

轮廓的切割主要是通过数组切片实现的,不过这里有一个小技巧:就是图片切割的w,h是宽和高,而数组讲的是行(row)和列(column)

所以,在切割图片时,数组的高和宽是反过来写的

  newimage=image[y+2:y+h-2,x+2:x+w-2] # 先用y确定高,再用x确定宽
      nrootdir=("E:/cut_image/")
      if not os.path.isdir(nrootdir):
        os.makedirs(nrootdir)
      cv2.imwrite( nrootdir+str(i)+".jpg",newimage) 
      print (i)

这样就可以把确定的轮廓都切割出来了。

总结

以上就是本文关于Python通过OpenCV的findContours获取轮廓并切割实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python+opencv轮廓检测代码解析

OpenCV-Python实现轮廓检测实例分析

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

python pandas实现excel转为html格式的方法

如下所示: #!/usr/bin/env Python # coding=utf-8 import pandas as pd import codecs xd = pd.ExcelF...

Python使用itchat模块实现群聊转发,自动回复功能示例

本文实例讲述了Python使用itchat模块实现群聊转发,自动回复功能。分享给大家供大家参考,具体如下: 1.itchat自动把好友发来的消息,回复给他 仅能实现自动回复 原文给 好友...

解决使用export_graphviz可视化树报错的问题

解决使用export_graphviz可视化树报错的问题

在使用可视化树的过程中,报错了。说是‘dot.exe'not found in path 原代码: # import tools needed for visualization f...

Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】

本文实例讲述了Python tensorflow实现mnist手写数字识别。分享给大家供大家参考,具体如下: 非卷积实现 import tensorflow as tf from t...

TensorFlow dataset.shuffle、batch、repeat的使用详解

直接看代码例子,有详细注释!! import tensorflow as tf import numpy as np d = np.arange(0,60).reshape([6...