Python+matplotlib实现计算两个信号的交叉谱密度实例

yipeiwu_com6年前Python基础

 计算两个信号的交叉谱密度

结果展示:

完整代码:

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))         # white noise 1
nse2 = np.random.randn(len(t))         # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt  # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt  # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

总结

以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

浅谈Django中view对数据库的调用方法

question: Django中对数据库的调用非常的隐蔽,在各种复杂的模块互相拼接继承中很难发现获取数据库内容的部分 来,开始试图理解一下下 首先,数据库中的表对应的是model中的...

Python2.7实现多进程下开发多线程示例

简单的基于Python2.7版本的多进程下开发多线程的示例,供大家参考,具体内容如下 可以使得程序执行效率至少提升10倍 #!/usr/bin/env python # -*- co...

利用Python库Scapy解析pcap文件的方法

利用Python库Scapy解析pcap文件的方法

每次写博客都是源于纳闷,python解析pcap这么常用的例子网上竟然没有,全是一堆命令行执行的python,能用吗?玩呢? pip安装scapy,然后解析pcap: import...

Numpy之random函数使用学习

random模块用于生成随机数,下面看看模块中一些常用函数的用法: numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点...

pycharm中显示CSS提示的知识点总结

pycharm中显示CSS提示的知识点总结

我们用pycharm写CSS的时候,是不是苦于没有提示,那么pycharm中如何显示CSS提示呢?下面小编给大家分享一下。 首先点击左上角的file菜单,选择Setting 接着选择E...