Python+matplotlib实现计算两个信号的交叉谱密度实例

yipeiwu_com5年前Python基础

 计算两个信号的交叉谱密度

结果展示:

完整代码:

import numpy as np
import matplotlib.pyplot as plt


fig, (ax1, ax2) = plt.subplots(2, 1)
# make a little extra space between the subplots
fig.subplots_adjust(hspace=0.5)

dt = 0.01
t = np.arange(0, 30, dt)

# Fixing random state for reproducibility
np.random.seed(19680801)


nse1 = np.random.randn(len(t))         # white noise 1
nse2 = np.random.randn(len(t))         # white noise 2
r = np.exp(-t / 0.05)

cnse1 = np.convolve(nse1, r, mode='same') * dt  # colored noise 1
cnse2 = np.convolve(nse2, r, mode='same') * dt  # colored noise 2

# two signals with a coherent part and a random part
s1 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse1
s2 = 0.01 * np.sin(2 * np.pi * 10 * t) + cnse2

ax1.plot(t, s1, t, s2)
ax1.set_xlim(0, 5)
ax1.set_xlabel('time')
ax1.set_ylabel('s1 and s2')
ax1.grid(True)

cxy, f = ax2.csd(s1, s2, 256, 1. / dt)
ax2.set_ylabel('CSD (db)')
plt.show()

总结

以上就是本文关于Python+matplotlib实现计算两个信号的交叉谱密度实例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python装饰器用法示例小结

本文实例讲述了Python装饰器用法。分享给大家供大家参考,具体如下: 下面的程序示例了python装饰器的使用: 示例一: def outer(fun): print fun...

用python写的一个wordpress的采集程序

用python写的一个wordpress的采集程序

在学习python的过程中,经过不断的尝试及努力,终于完成了第一个像样的python程序,虽然还有很多需要优化的地方,但是目前基本上实现了我所要求的功能,先贴一下程序代码: 具体代码如...

Python 基础教程之str和repr的详解

Python str和repr的详解 str可以将值转化为合理的字符串形式,以便用户可以理解; repr会以合法Python表达式的形式来表达值。 举例如下: # str输出用户...

Python中 CSV格式清洗与转换的实例代码

题目: CSV格式清洗与转换 描述 附件是一个CSV格式文件,提取数据进行如下格式转换:‪‬‪‬‪‬‪...

使用PyTorch将文件夹下的图片分为训练集和验证集实例

PyTorch提供了ImageFolder的类来加载文件结构如下的图片数据集: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png...