用tensorflow实现弹性网络回归算法

yipeiwu_com6年前Python基础

本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下

python代码:

#用tensorflow实现弹性网络算法(多变量) 
#使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征。 
 
 
#1 导入必要的编程库,创建计算图,加载数据集 
import matplotlib.pyplot as plt 
import tensorflow as tf 
import numpy as np 
from sklearn import datasets 
from tensorflow.python.framework import ops 
 
ops.get_default_graph() 
sess = tf.Session() 
iris = datasets.load_iris() 
 
x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data]) 
y_vals = np.array([y[0] for y in iris.data]) 
 
 
#2 声明学习率,批量大小,占位符和模型变量,模型输出 
learning_rate = 0.001 
batch_size = 50 
x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32) #占位符大小为3 
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) 
A = tf.Variable(tf.random_normal(shape=[3,1])) 
b = tf.Variable(tf.random_normal(shape=[1,1])) 
model_output = tf.add(tf.matmul(x_data, A), b) 
 
 
#3 对于弹性网络回归算法,损失函数包括L1正则和L2正则 
elastic_param1 = tf.constant(1.) 
elastic_param2 = tf.constant(1.) 
l1_a_loss = tf.reduce_mean(abs(A)) 
l2_a_loss = tf.reduce_mean(tf.square(A)) 
e1_term = tf.multiply(elastic_param1, l1_a_loss) 
e2_term = tf.multiply(elastic_param2, l2_a_loss) 
loss = tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), e1_term), e2_term), 0) 
 
 
 
#4 初始化变量, 声明优化器, 然后遍历迭代运行, 训练拟合得到参数 
init = tf.global_variables_initializer() 
sess.run(init) 
my_opt = tf.train.GradientDescentOptimizer(learning_rate) 
train_step = my_opt.minimize(loss) 
 
loss_vec = [] 
for i in range(1000): 
   rand_index = np.random.choice(len(x_vals), size=batch_size) 
   rand_x = x_vals[rand_index] 
   rand_y = np.transpose([y_vals[rand_index]]) 
   sess.run(train_step, feed_dict={x_data:rand_x, y_target:rand_y}) 
   temp_loss = sess.run(loss, feed_dict={x_data:rand_x, y_target:rand_y}) 
   loss_vec.append(temp_loss) 
   if (i+1)%250 == 0: 
     print('Step#' + str(i+1) +'A = ' + str(sess.run(A)) + 'b=' + str(sess.run(b))) 
     print('Loss= ' +str(temp_loss)) 
      
 
#现在能观察到, 随着训练迭代后损失函数已收敛。 
plt.plot(loss_vec, 'k--') 
plt.title('Loss per Generation') 
plt.xlabel('Generation') 
plt.ylabel('Loss') 
plt.show() 

本文参考书《Tensorflow机器学习实战指南》

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 读写excel文件操作示例【附源码下载】

本文实例讲述了python 读写excel文件操作。分享给大家供大家参考,具体如下: 对excel文件的操作,python有第三方的工具包支持,xlutils,在这个工具包中包含了xlr...

python 矩阵增加一行或一列的实例

python 矩阵增加一行或一列的实例

矩阵增加行 np.row_stack() 与 np.column_stack() import numpy as np a = np.array([[4, 4,], [5, 5]])...

利用ImageAI库只需几行python代码实现目标检测

利用ImageAI库只需几行python代码实现目标检测

什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization) + 识别(Recognition)。相比分类,检测给出的是对图片前景和背景的理解,我们...

Pandas探索之高性能函数eval和query解析

Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据...

Python实现partial改变方法默认参数

在Python的标准库中,functools库中有很多对方法有操作的封装功能,partial Objects就是其中之一,他可以实现对方法参数默认值的修改。本文就以实例代码说明这一功能。...