Python编程实现的简单神经网络算法示例

yipeiwu_com5年前Python基础

本文实例讲述了Python编程实现的简单神经网络算法。分享给大家供大家参考,具体如下:

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "【听图阁-专注于Python设计】测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

迭代次数为1000时,预测结果为:

迭代次数为10000,预测结果为:

迭代次数为100000,预测结果为:

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "【听图阁-专注于Python设计】测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

wxPython窗口中文乱码解决方法

本文实例讲述了wxPython窗口中文乱码解决方法,分享给大家供大家参考。具体方法如下: 文件保存为 utf-8 文件开头添加 # -*- coding: utf-8 -*- 在有中文字...

python实现计算器功能

python实现计算器功能

本文实例为大家分享了python计算器的具体代码,供大家参考,具体内容如下 主要用到的工具是Python中的Tkinter库 比较简单 直接上图形界面和代码 引用Tkinter库...

python输出决策树图形的例子

windows10: 1,先要pip安装pydotplus和graphviz: pip install pydotplus pip install graphviz 2,www.g...

代码分析Python地图坐标转换

最近做项目正好需要坐标的转换 各地图API坐标系统比较与转换; WGS84坐标系:即地球坐标系,国际上通用的坐标系。设备一般包含GPS芯片或者北斗芯片获取的经纬度为WGS84地...

python实现文本进度条 程序进度条 加载进度条 单行刷新功能

python实现文本进度条 程序进度条 加载进度条 单行刷新功能,具体内容如下所示: 利用time库来替代某个程序 的进行过程,做实例, 思路是,简单打印出来程序进度 单行刷新关键是\r...