Python编程实现的简单神经网络算法示例

yipeiwu_com6年前Python基础

本文实例讲述了Python编程实现的简单神经网络算法。分享给大家供大家参考,具体如下:

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "【听图阁-专注于Python设计】测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

迭代次数为1000时,预测结果为:

迭代次数为10000,预测结果为:

迭代次数为100000,预测结果为:

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "【听图阁-专注于Python设计】测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python实现Decorator模式实例代码

本文研究的主要是python实现Decorator模式,具体介绍如下。 一般来说,装饰器是一个函数,接受一个函数(或者类)作为参数,返回值也是也是一个函数(或者类)。首先来看一个简单的例...

python银行系统实现源码

本文实例为大家分享了python实现银行系统的具体代码,供大家参考,具体内容如下 1、admin.py 定义管理员信息和主界面显示 #!/usr/bin/env python # c...

对Python 2.7 pandas 中的read_excel详解

导入pandas模块: import pandas as pd 使用import读入pandas模块,并且为了方便使用其缩写pd指代。 读入待处理的excel文件: df =...

浅谈python下含中文字符串正则表达式的编码问题

浅谈python下含中文字符串正则表达式的编码问题

前言 Python文件默认的编码格式是ascii ,无法识别汉字,因为ascii码中没有中文。 所以py文件中要写中文字符时,一般在开头加 # -*- coding: utf-8 -*-...

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估。 效果如下(演示视频):  由于这是通过比较面部色素的变化评估脉搏所以光线、人体移动、不同角度、不同...