Python编程实现的简单神经网络算法示例

yipeiwu_com6年前Python基础

本文实例讲述了Python编程实现的简单神经网络算法。分享给大家供大家参考,具体如下:

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "【听图阁-专注于Python设计】测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

迭代次数为1000时,预测结果为:

迭代次数为10000,预测结果为:

迭代次数为100000,预测结果为:

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "【听图阁-专注于Python设计】测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python批量合并有合并单元格的Excel文件详解

Python批量合并有合并单元格的Excel文件详解

合并单元格 合并单元格相信大家都会,比如下面这段简单的代码就可以实现: app='Word' word=win32.gencache.EnsureDispatch('%s.Appl...

TensorFlow实现Batch Normalization

TensorFlow实现Batch Normalization

一、BN(Batch Normalization)算法 1. 对数据进行归一化处理的重要性 神经网络学习过程的本质就是学习数据分布,在训练数据与测试数据分布不同情况下,模型的泛化能力就大...

python 求某条线上特定x值或y值的点坐标方法

问题可以转换为:求一条垂直于x轴或平行于y轴的直线与该线的交点 import numpy as np import shapely.geometry as SG #某条线 li...

Python实现快速排序算法及去重的快速排序的简单示例

快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用。 该方法的基本思想是: 1.先从数列中取出一个数作为基准数。 2.分区过程,将比这个数大的数全放到它...

python实现文件助手中查看微信撤回消息

利用python实现防撤回,对方撤回的消息可在自己的微信文件传输助手中查看。 如果想变成可执行文件放在电脑中运行,可用pyinstaller将此程序打包成exe文件。 pyinsta...