详解如何利用Cython为Python代码加速

yipeiwu_com6年前Python基础

引言

通常,在 Python 中写循环(特别是多重循环)非常的慢,在文章 /post/133807.htm中,我们的元胞自动机的状态更新函数 update_state 使用了两重循环,所以我们尝试用 Cython 重构该方法。

代码

我们在同文件夹下新建一个 update.pyx 文件,写入如下内容

import numpy as np 
cimport numpy as np 
cimport cython


DTYPE = np.float
ctypedef np.float_t DTYPE_t

def update_state(np.ndarray[DTYPE_t, ndim=2] cells):
  return update_state_c(cells)

@cython.boundscheck(False)
@cython.wraparound(False)
cdef np.ndarray[DTYPE_t, ndim=2] update_state_c(np.ndarray[DTYPE_t, ndim=2] cells):
  """更新一次状态"""
  cdef unsigned int i
  cdef unsigned int j

  cdef np.ndarray[DTYPE_t, ndim=2] buf = np.zeros((cells.shape[0], cells.shape[1]), dtype=DTYPE)
  cdef DTYPE_t neighbor_num
  for i in range(1, cells.shape[0] - 1):
    for j in range(1, cells.shape[0] - 1):
      # 计算该细胞周围的存活细胞数
      
      neighbor_num = cells[i, j-1] + cells[i, j+1] + cells[i+1, j] + cells[i-1, j] +\
              cells[i-1, j-1] + cells[i-1, j+1] +\
              cells[i+1, j-1] + cells[i+1, j+1]
      
      if neighbor_num == 3:
        buf[i, j] = 1
      elif neighbor_num == 2:
        buf[i, j] = cells[i, j]
      else:
        buf[i, j] = 0
  return buf

update_state_c 函数上的两个装饰器是用来关闭 Cython 的边界检查的。

在同文件下新建一个 setup.py 文件

import numpy as np
from distutils.core import setup
from Cython.Build import cythonize

setup(
  name="Cython Update State",
  ext_modules=cythonize("update.pyx"),
  include_dirs=[np.get_include()]
)

因为在 Cython 文件中使用了 NumPy 的头文件,所以我们需要在 setup.py 将其包含进去。

执行 python setup.py build_ext --inplace 后,同文件夹下会生成一个 update.cp36-win_amd64.pyd 的文件,这就是编译好的 C 扩展。

我们修改原始的代码,首先在文件头部加入 import update as cupdate,然后修改更新方法如下

def update_state(self):
  """更新一次状态"""
  self.cells = cupdate.update_state(self.cells)
  self.timer += 1

将原方法名就改为 update_state_py 即可,运行脚本,无异常。

测速

我们编写一个方法来测试一下使用 Cython 可以带来多少速度的提升

def test_time():
  import time
  game = GameOfLife(cells_shape=(60, 60))
  t1 = time.time()
  for _ in range(300):
    game.update_state()
  t2 = time.time()
  print("Cython Use Time:", t2 - t1)
  del game
  game = GameOfLife(cells_shape=(60, 60))
  t1 = time.time()
  for _ in range(300):
    game.update_state_py()
  t2 = time.time()
  print("Native Python Use Time:", t2 - t1)

运行该方法,在我的电脑上输出如下

Cython Use Time: 0.007000446319580078
Native Python Use Time: 4.342248439788818

速度提升了 600 多倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用MQTT给硬件传输图片的实现方法

python使用MQTT给硬件传输图片的实现方法

最近因需要用python写一个微服务来用MQTT给硬件传输图片,其中python用的是flask框架,大概流程如下: 协议为: 需要将图片数据封装成多个消息进行传输,每个消息传输的数...

numpy使用技巧之数组过滤实例代码

本文研究的主要是numpy使用技巧之数组过滤的相关内容,具体如下。 当使用布尔数组b作为下标存取数组x中的元素时,将收集数组x中所有在数组b中对应下标为True的元素。使用布尔数组作为下...

python装饰器代替set get方法实例

对于变量的访问和设置,我们可以使用get、set方法,如下: class student: def __init__(self,name): self.__name =...

简单实现python画圆功能

简单实现python画圆功能

本文实例为大家分享了python实现画圆功能的具体代码,供大家参考,具体内容如下 import numpy as np import matplotlib.pyplot as p...

Python猴子补丁知识点总结

属性在运行时的动态替换,叫做猴子补丁(Monkey Patch)。 为什么叫猴子补丁 属性的运行时替换和猴子也没什么关系,关于猴子补丁的由来网上查到两种说法: 1.这个词原来为Guerr...