python使用KNN算法手写体识别

yipeiwu_com5年前Python基础

本文实例为大家分享了用KNN算法手写体识别的具体代码,供大家参考,具体内容如下

#!/usr/bin/python 
#coding:utf-8 
 
import numpy as np 
import operator 
import matplotlib 
import matplotlib.pyplot as plt 
import os 
 
''''' 
KNN算法 
1. 计算已知类别数据集中的每个点依次执行与当前点的距离。 
2. 按照距离递增排序。 
3. 选取与当前点距离最小的k个点 
4. 确定前k个点所在类别的出现频率 
5. 返回前k个点出现频率最高的类别作为当前点的预测分类 
''' 
 
''''' 
inX为要分类的向量 
dataSet为训练样本 
labels为标签向量 
k为最近邻的个数 
''' 
def classify0(inX , dataSet , labels , k): 
 dataSetSize = dataSet.shape[0]#dataSetSize为训练样本的个数 
 diffMat = np.tile(inX , (dataSetSize , 1)) - dataSet#将inX扩展为dataSetSize行,1列 
 sqDiffMat = diffMat**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort()#返回的是元素从小到大排序后,该元素原来的索引值的序列 
 classCount = {} 
 for i in range(k): 
  voteIlabel = labels[sortedDistIndicies[i]]#voteIlabel为类别 
  classCount[voteIlabel] = classCount.get(voteIlabel,0)+1#如果之前这个voteIlabel是有的,那么就返回字典里这个voteIlabel里的值,如果没有就返回0 
 sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)#key=operator.itemgetter(1)的意思是按照字典里的第一个排序,{A:1,B:2},要按照第1个(AB是第0个),即‘1'‘2'排序。reverse=True是降序排序 
 print sortedClassCount 
 return sortedClassCount[0][0] 
 
 
''''' 
将图像转换为1*1024的向量 
''' 
def img2vector(filename): 
 returnVect = np.zeros((1,1024)) 
 fr = open(filename) 
 for i in range(32): 
  line = fr.readline() 
  for j in range(32): 
   returnVect[0,i*32+j] = int(line[j] ) 
 return returnVect 
 
''''' 
手写体识别系统测试 
''' 
def handwritingClassTest(trainFilePath,testFilePath): 
 hwLabels = [] 
 trainingFileList = os.listdir(trainFilePath) 
 m=len(trainingFileList) 
 trainSet = np.zeros((m,1024)) 
 for i in range(m): 
  filename = trainingFileList[i] 
  classNum = filename.split('.')[0] 
  classNum = int(classNum.split('_')[0]) 
  hwLabels.append(classNum) 
  trainSet[i] = img2vector( os.path.join(trainFilePath,filename) ) 
 testFileList = os.listdir(testFilePath) 
 errorCount = 0 
 mTest = len(testFileList) 
 for i in range(mTest): 
  filename = trainingFileList[i] 
  classNum = filename.split('.')[0] 
  classNum = int(classNum.split('_')[0]) 
  vectorUnderTest = img2vector(os.path.join(trainFilePath, filename)) 
  classifyNum = classify0(vectorUnderTest,trainSet,hwLabels,10) 
  print "the classifier came back with : %d , the real answer is : %d"% (classifyNum , classNum) 
  if(classifyNum != classNum) : errorCount+=1 
 print ("\nthe total number of error is : %d"%errorCount) 
 print ("\nthe error rate is : %f"%(float(errorCount)/mTest)) 
handwritingClassTest()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

本文实例讲述了Python3.5基础之NumPy模块的使用。分享给大家供大家参考,具体如下: 1、简介 2、多维数组——ndarray...

python获取txt文件词向量过程详解

在读取https://github.com/Embedding/Chinese-Word-Vectors中的中文词向量时,选择了一个有3G多的txt文件,之前在做词向量时用的是word2...

Python的numpy库下的几个小函数的用法(小结)

numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数。 1、mat函数 mat...

Python模拟登录的多种方法(四种)

Python模拟登录的多种方法(四种)

正文 方法一:直接使用已知的cookie访问 特点:   简单,但需要先在浏览器登录 原理:   简单地说,cookie保存在发起请求的客户端中,服务器利用cookie来区分不同的客户端...

python动态加载包的方法小结

本文实例总结了python动态加载包的方法。分享给大家供大家参考,具体如下: 动态加载模块有三种方法 1. 使用系统函数__import_() stringmodule = __im...