TensorFlow如何实现反向传播

yipeiwu_com5年前Python基础

使用TensorFlow的一个优势是,它可以维护操作状态和基于反向传播自动地更新模型变量。
TensorFlow通过计算图来更新变量和最小化损失函数来反向传播误差的。这步将通过声明优化函数(optimization function)来实现。一旦声明好优化函数,TensorFlow将通过它在所有的计算图中解决反向传播的项。当我们传入数据,最小化损失函数,TensorFlow会在计算图中根据状态相应的调节变量。

回归算法的例子从均值为1、标准差为0.1的正态分布中抽样随机数,然后乘以变量A,损失函数为L2正则损失函数。理论上,A的最优值是10,因为生成的样例数据均值是1。

二个例子是一个简单的二值分类算法。从两个正态分布(N(-1,1)和N(3,1))生成100个数。所有从正态分布N(-1,1)生成的数据标为目标类0;从正态分布N(3,1)生成的数据标为目标类1,模型算法通过sigmoid函数将这些生成的数据转换成目标类数据。换句话讲,模型算法是sigmoid(x+A),其中,A是要拟合的变量,理论上A=-1。假设,两个正态分布的均值分别是m1和m2,则达到A的取值时,它们通过-(m1+m2)/2转换成到0等距的值。后面将会在TensorFlow中见证怎样取到相应的值。

同时,指定一个合适的学习率对机器学习算法的收敛是有帮助的。优化器类型也需要指定,前面的两个例子会使用标准梯度下降法,它在TensorFlow中的实现是GradientDescentOptimizer()函数。

# 反向传播
#----------------------------------
#
# 以下Python函数主要是展示回归和分类模型的反向传播

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 创建计算图会话
sess = tf.Session()

# 回归算法的例子:
# We will create sample data as follows:
# x-data: 100 random samples from a normal ~ N(1, 0.1)
# target: 100 values of the value 10.
# We will fit the model:
# x-data * A = target
# Theoretically, A = 10.

# 生成数据,创建占位符和变量A
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)

# Create variable (one model parameter = A)
A = tf.Variable(tf.random_normal(shape=[1]))

# 增加乘法操作
my_output = tf.multiply(x_data, A)

# 增加L2正则损失函数
loss = tf.square(my_output - y_target)

# 在运行优化器之前,需要初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 声明变量的优化器
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

# 训练算法
for i in range(100):
  rand_index = np.random.choice(100)
  rand_x = [x_vals[rand_index]]
  rand_y = [y_vals[rand_index]]
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%25==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))

# 分类算法例子
# We will create sample data as follows:
# x-data: sample 50 random values from a normal = N(-1, 1)
#     + sample 50 random values from a normal = N(1, 1)
# target: 50 values of 0 + 50 values of 1.
#     These are essentially 100 values of the corresponding output index
# We will fit the binary classification model:
# If sigmoid(x+A) < 0.5 -> 0 else 1
# Theoretically, A should be -(mean1 + mean2)/2

# 重置计算图
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# 生成数据
x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(3, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)

# 偏差变量A (one model parameter = A)
A = tf.Variable(tf.random_normal(mean=10, shape=[1]))

# 增加转换操作
# Want to create the operstion sigmoid(x + A)
# Note, the sigmoid() part is in the loss function
my_output = tf.add(x_data, A)

# 由于指定的损失函数期望批量数据增加一个批量数的维度
# 这里使用expand_dims()函数增加维度
my_output_expanded = tf.expand_dims(my_output, 0)
y_target_expanded = tf.expand_dims(y_target, 0)

# 初始化变量A
init = tf.global_variables_initializer()
sess.run(init)

# 声明损失函数 交叉熵(cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output_expanded, labels=y_target_expanded)

# 增加一个优化器函数 让TensorFlow知道如何更新和偏差变量
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# 迭代
for i in range(1400):
  rand_index = np.random.choice(100)
  rand_x = [x_vals[rand_index]]
  rand_y = [y_vals[rand_index]]

  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%200==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
    print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))

# 评估预测
predictions = []
for i in range(len(x_vals)):
  x_val = [x_vals[i]]
  prediction = sess.run(tf.round(tf.sigmoid(my_output)), feed_dict={x_data: x_val})
  predictions.append(prediction[0])

accuracy = sum(x==y for x,y in zip(predictions, y_vals))/100.
print('最终精确度 = ' + str(np.round(accuracy, 2)))

输出:

Step #25 A = [ 6.12853956]
Loss = [ 16.45088196]
Step #50 A = [ 8.55680943]
Loss = [ 2.18415046]
Step #75 A = [ 9.50547695]
Loss = [ 5.29813051]
Step #100 A = [ 9.89214897]
Loss = [ 0.34628963]
Step #200 A = [ 3.84576249]
Loss = [[ 0.00083012]]
Step #400 A = [ 0.42345378]
Loss = [[ 0.01165466]]
Step #600 A = [-0.35141727]
Loss = [[ 0.05375391]]
Step #800 A = [-0.74206048]
Loss = [[ 0.05468176]]
Step #1000 A = [-0.89036471]
Loss = [[ 0.19636908]]
Step #1200 A = [-0.90850282]
Loss = [[ 0.00608062]]
Step #1400 A = [-1.09374011]
Loss = [[ 0.11037558]]
最终精确度 = 1.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 对字典按照value进行排序的方法

字典按照value进行排序共有三种方法 d = {'a': 1, 'b': 4, 'c': 2, 'f' : 12} # 第一种方法,key使用lambda匿名函数取value进...

Django REST框架创建一个简单的Api实例讲解

Django REST框架创建一个简单的Api实例讲解

Create a Simple API Using Django REST Framework in Python WHAT IS AN API API stands for appli...

基于asyncio 异步协程框架实现收集B站直播弹幕

前言 虽然标题是全站,但目前只做了等级 top 100 直播间的全天弹幕收集。 弹幕收集系统基于之前的B 站直播弹幕姬 Python 版修改而来。具体协议分析可以看上一篇文章。 直...

python 网络编程常用代码段

python 网络编程常用代码段

服务器端代码: # -*- coding: cp936 -*- import socket sock = socket.socket(socket.AF_INET, socket....

1分钟快速生成用于网页内容提取的xslt

1分钟快速生成用于网页内容提取的xslt

1分钟快速生成用于网页内容提取的xslt,具体内容如下 1、项目背景 在《Python即时网络爬虫项目说明》一文我们说过要做一个通用的网络爬虫,而且能节省程序员大半的时间,而焦点问题就是...