初探TensorFLow从文件读取图片的四种方式

yipeiwu_com6年前Python基础

本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍。

1.使用gfile读图片,decode输出是Tensor,eval后是ndarray

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

print(tf.__version__)

image_raw = tf.gfile.FastGFile('test/a.jpg','rb').read()  #bytes
img = tf.image.decode_jpeg(image_raw) #Tensor
#img2 = tf.image.convert_image_dtype(img, dtype = tf.uint8)

with tf.Session() as sess:
  print(type(image_raw)) # bytes
  print(type(img)) # Tensor
  #print(type(img2))

  print(type(img.eval())) # ndarray !!!
  print(img.eval().shape)
  print(img.eval().dtype)

#  print(type(img2.eval()))
#  print(img2.eval().shape)
#  print(img2.eval().dtype)
  plt.figure(1)
  plt.imshow(img.eval())
  plt.show()

输出为:

1.3.0
<class 'bytes'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
图片显示(略)

2.使用WholeFileReader输入queue,decode输出是Tensor,eval后是ndarray

import tensorflow as tf
import os
import matplotlib.pyplot as plt
def file_name(file_dir):  #来自//www.jb51.net/article/134543.htm
  for root, dirs, files in os.walk(file_dir): #模块os中的walk()函数遍历文件夹下所有的文件
    print(root) #当前目录路径 
    print(dirs) #当前路径下所有子目录 
    print(files) #当前路径下所有非目录子文件 

def file_name2(file_dir):  #特定类型的文件
  L=[]  
  for root, dirs, files in os.walk(file_dir): 
    for file in files: 
      if os.path.splitext(file)[1] == '.jpg':  
        L.append(os.path.join(root, file)) 
  return L 

path = file_name2('test')


#以下参考//www.jb51.net/article/134547.htm (十图详解TensorFlow数据读取机制)
#path2 = tf.train.match_filenames_once(path)
file_queue = tf.train.string_input_producer(path, shuffle=True, num_epochs=2) #创建输入队列 
image_reader = tf.WholeFileReader() 
key, image = image_reader.read(file_queue) 
image = tf.image.decode_jpeg(image) 

with tf.Session() as sess: 
#  coord = tf.train.Coordinator() #协同启动的线程 
#  threads = tf.train.start_queue_runners(sess=sess, coord=coord) #启动线程运行队列 
#  coord.request_stop() #停止所有的线程 
#  coord.join(threads) 

  tf.local_variables_initializer().run()
  threads = tf.train.start_queue_runners(sess=sess)

  #print (type(image)) 
  #print (type(image.eval())) 
  #print(image.eval().shape)
  for _ in path+path:
    plt.figure
    plt.imshow(image.eval())
    plt.show()

3.使用read_file,decode输出是Tensor,eval后是ndarray

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

print(tf.__version__)

image_value = tf.read_file('test/a.jpg')
img = tf.image.decode_jpeg(image_value, channels=3)

with tf.Session() as sess:
  print(type(image_value)) # bytes
  print(type(img)) # Tensor
  #print(type(img2))

  print(type(img.eval())) # ndarray !!!
  print(img.eval().shape)
  print(img.eval().dtype)

#  print(type(img2.eval()))
#  print(img2.eval().shape)
#  print(img2.eval().dtype)
  plt.figure(1)
  plt.imshow(img.eval())
  plt.show()

输出是:

1.3.0
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
显示图片(略)

4.TFRecords:

有空再看。

如果图片是根据分类放在不同的文件夹下,那么可以直接使用如下代码:
/post/134532.htm
/post/134539.htm

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用pandas和xlsxwriter读写xlsx文件的方法示例

Python使用pandas和xlsxwriter读写xlsx文件的方法示例

python使用pandas和xlsxwriter读写xlsx文件 已有xlsx文件如下: 1. 读取前n行所有数据 # coding: utf-8 import pandas a...

Django 中间键和上下文处理器的使用

Django 中间键和上下文处理器的使用

一、中间键的引入: Django中间件(Middleware)是一个 轻量级、底层的 “插件”系 统,可以介入 Django的请求和响应处理过程, 修改 Django的输入或输出. dj...

Python小工具之消耗系统指定大小内存的方法

工作中需要根据某个应用程序具体吃了多少内存来决定执行某些操作,所以需要写个小工具来模拟应用程序使用内存情况,下面是我写的一个Python脚本的实现。 #!/usr/bin/pytho...

完美解决Python matplotlib绘图时汉字显示不正常的问题

完美解决Python matplotlib绘图时汉字显示不正常的问题

Matplotlib是一个很好的作图软件,但是python下默认不支持中文,所以需要做一些修改,方法如下: 1.在python安装目录的Lib目录下创建ch.py文件。 文件中代码为:...

Django如何配置mysql数据库

Django如何配置mysql数据库

Django项目默认使用sqlite 数据库,但是我想用mysql数据库,应该如何配置呢。 Django连接mysql数据库的操作,是通过根模块的配置实现的,在项目根模块的配置文件set...