详解tensorflow实现迁移学习实例

yipeiwu_com5年前Python基础

本文主要是总结利用tensorflow实现迁移学习的基本步骤。

所谓迁移学习,就是将上一个问题上训练好的模型通过简单的调整使其适用于一个新的问题。比如说,我们可以保留训练好的Inception-v3模型中所有的参数,只替换最后一层全连接层。在最后一层全连接层之前的网络称之为瓶颈层(bottleneck)。

持久化

首先需要简单介绍下tensorflow中的持久化:在tensorflow中提供了一个非常简单的API来保存和还原一个神经网络模型,这个API就是tf.train.Saver类。当采用该方法保存时会生成三个文件,一个文件是model.ckpt.meta,它保存了Tensorflow计算图的结构;第二个文件是model.ckpt,它保存了程序中每一个变量的取值;最后一个文件是checkpoint文件,这个文件中保存了一个目录下所有模型文件列表。

保存图

init_op = tf.initialize_all_variables()
with tf.Session() as sess:
  sess.run(init_op)
  saver.save(sess, "model.ckpt")

加载图

saver = tf.train.import_meta_graph("model.ckpt.meta")
with tf.Session() as sess:
  saver.restore(sess, "model.ckpt")

迁移学习

第一步: 读取加载已经训练好的模型

在inception-v3模型代表瓶颈层结果的张量名称是'pool3/_reshape:0',图像输入张量对应的名称'DecodeJpeg/contents:0'

BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
#读取已经训练好的模型
  with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
  bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])

第二步:利用读取的模型,定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层的取值,是一种特征提取过程。

def run_bottlenect_on_images(sess, image_data, image_data_tensor, bottlenect_tensor):
  bottlenect_values = sess.run(bottlenect_tensor, {image_data_tensor: image_data})

  # 经过卷积网络处理后的是一个思维数组,压缩成一个特征,一维向量输出
  bottlenect_values = np.squeeze(bottlenect_values)
  return bottlenect_values

该过程实际上利用获取的tensor计算图片的特征向量,完成特征提取的过程。

第三步:利用获取的图像的特征向量完成接下来的任务(比如分类)

以上是仅关键代码。希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python获取指定字符串中重复模式最高的字符串方法

给定一个字符串,如何得到其中重复模式最高的子字符串,我采用的方法是使用滑窗机制,对给定的字符串切分,窗口的大小从1增加到字符串长度减1,将所有的得到的切片统计结果,在这里不考虑单个字符的...

python 集合 并集、交集 Series list set 转换的实例

set转成list方法如下: list转成set方法如下: s = set('12342212')       &n...

django+xadmin+djcelery实现后台管理定时任务

django+xadmin+djcelery实现后台管理定时任务

继上一篇中间表的数据是动态的,图表展示的数据才比较准确。这里用到一个新的模块Djcelery,安装配置步骤如下: 1.安装 redis==2.10.6 celery==3.1.23 dj...

python 怎样将dataframe中的字符串日期转化为日期的方法

方法一:也是最简单的 直接使用pd.to_datetime函数实现 data['交易时间'] = pd.to_datetime(data['交易时间']) 方法二: 源自利...

利用Django框架中select_related和prefetch_related函数对数据库查询优化

利用Django框架中select_related和prefetch_related函数对数据库查询优化

实例的背景说明 假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下: Models.py 内容如下:   from django...