python互斥锁、加锁、同步机制、异步通信知识总结

yipeiwu_com5年前Python基础

某个线程要共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进入写入操作,从而保证了多线程情况下数据的正确性。

采用f_flag的方法效率低

创建锁

mutex=threading.Lock()

锁定

mutex.acquire([blocking])#里面可以加blocking(等待的时间)或者不加,不加就会一直等待(堵塞)

释放

mutex.release()

import threading 
from threading import Thread 
from threading import Lock 
import time 
 
thnum=0 
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之 
class MyThread(threading.Thread): 
  def run(self): 
    mutex.acquire() 
    for i in range(10000): 
      global thnum 
      thnum+=1   
    print(thnum) 
    mutex.release()  
def test(): 
  global thnum 
  mutex.acquire() #等待可以上锁,通知而不是轮训,没有占用CPU 
  for i in range(10000): 
    thnum+=1 
  print(thnum) 
  mutex.release()#解锁 
mutex=Lock() 
if __name__=='__main__': 
  t=MyThread() 
  t.start() 
 
#创建一把互斥锁,默认是没有上锁的 
 
thn=Thread(target=test) 
thn.start() 
 
''''' 
10000 
20000 
''' 

只要一上锁,由多任务变为单任务,相当于只有一个线程在运行。

下面的代码相对上面加锁的时间变短了

import threading 
from threading import Thread 
from threading import Lock 
import time 
 
thnum=0 
#两个线程都在抢着对这个锁进行上锁,如果有一方成功上锁,那么导致另外一方会堵塞(一直等待),到这个锁被解开为之 
class MyThread(threading.Thread): 
  def run(self): 
    for i in range(10000): 
      mutex.acquire() 
      global thnum 
      thnum+=1 
      mutex.release()#释放后,都开始抢,这样上锁的时间变短  
    print(thnum) 
     
def test(): 
  global thnum 
  for i in range(10000): 
    mutex.acquire() 
    thnum+=1 
    mutex.release()#解锁 
  print(thnum) 
mutex=Lock() 
if __name__=='__main__': 
  t=MyThread() 
  t.start() 
 
#创建一把互斥锁,默认是没有上锁的 
 
thn=Thread(target=test) 
thn.start() 
 
''''' 
10000 
20000 
''' 

只有必须加锁的地方才加锁

同步:按照预定的先后顺序执行

一个运行完后,释放下一个,下一个锁定后运行,再释放下一个,下一个锁定后,运行后释放下一个..... 释放第一个

异步:

#异步的实现 
from multiprocessing import Pool 
import time 
import os 
 
#getpid()获取当前进程的进程号 
#getppid()获取当前进程的父进程号 
 
def test():#子进程 
  print("----进程池中的进程-----pid=%d,ppid=%d --"%(os.getpid(),os.getppid())) 
  for i in range(3): 
    print("-----%d----"%i) 
    time.sleep(1) 
  return "over" #子进程执行完后返回给操作系统,返回给父进程 
 
def test2(args): 
  print("-----callback func----pid=%d"%os.getpid())#主进程调用test2 
  print("------callback func---args=%s"%args) 
 
def main(): 
  pool=Pool(3) 
  pool.apply_async(func=test,callback=test2)#回调 
  time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2 
 
  print("----主进程-pid = %d"%os.getpid()) 
 
if __name__=="__main__": 
  #main() 
  pool=Pool(3) 
  pool.apply_async(test,callback=test2)#回调 
  time.sleep(5)#收到func进程结束后的信号后,执行回调函数test2 
 
  print("----主进程-pid = %d"%os.getpid()) 
 
'''''显示结果不太正确,应该先运行test呀,再运行test2 
-----callback func----pid=7044 
------callback func---args=over 
----主进程-pid = 7044 
----进程池中的进程-----pid=3772,ppid=7044 -- 
-----0---- 
-----1---- 
-----2---- 
''' 

相关文章

在自动化中用python实现键盘操作的方法详解

原来在robotframework中使用press key方法进行键盘的操作,但是该方法需要写被操作对象的locator,不是很方便,现在找到了一种win32api库写键盘操作的一个方法...

Python Dataframe 指定多列去重、求差集的方法

1)去重 指定多列去重,这是在dataframe没有独一无二的字段作为PK(主键)时,需要指定多个字段一起作为该行的PK,在这种情况下对整体数据进行去重。 Attention:主要用到了...

Python UnicodeEncodeError: 'gbk' codec can't encode character 解决方法

使用Python写文件的时候,或者将网络数据流写入到本地文件的时候,大部分情况下会遇到:UnicodeEncodeError: 'gbk' codec can't encode char...

详解python列表(list)的使用技巧及高级操作

1、合并列表(extend) 跟元组一样,用加号(+)将两个列表加起来即可实现合并: In [1]: x=list(range(1, 13, 2)) In [2]: x + ['b'...

基于python traceback实现异常的获取与处理

这篇文章主要介绍了基于python traceback实现异常的获取与处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1、trac...