Python标准库笔记struct模块的使用

yipeiwu_com5年前Python基础

最近在学习python网络编程这一块,在写简单的socket通信代码时,遇到了struct这个模块的使用,当时不太清楚这到底有和作用,后来查阅了相关资料大概了解了,在这里做一下简单的总结。

了解c语言的人,一定会知道struct结构体在c语言中的作用,它定义了一种结构,里面包含不同类型的数据(int,char,bool等等),方便对某一结构对象进行处理。而在网络通信当中,大多传递的数据是以二进制流(binary data)存在的。当传递字符串时,不必担心太多的问题,而当传递诸如int、char之类的基本数据的时候,就需要有一种机制将某些特定的结构体类型打包成二进制流的字符串然后再网络传输,而接收端也应该可以通过某种机制进行解包还原出原始的结构体数据。python中的struct模块就提供了这样的机制,该模块的主要作用就是对python基本类型值与用python字符串格式表示的C struct类型间的转化(This module performs conversions between Python values and C structs represented as Python strings.)。stuct模块提供了很简单的几个函数,下面写几个例子。

该模块作用是完成Python数值和C语言结构体的Python字符串形式间的转换。这可以用于处理存储在文件中或从网络连接中存储的二进制数据,以及其他数据源。

用途: 在Python基本数据类型和二进制数据之间进行转换

struct模块提供了用于在字节字符串和Python原生数据类型之间转换函数,比如数字和字符串。

模块函数和Struct类

它除了提供一个Struct类之外,还有许多模块级的函数用于处理结构化的值。这里有个格式符(Format specifiers)的概念,是指从字符串格式转换为已编译的表示形式,类似于正则表达式的处理方式。通常实例化Struct类,调用类方法来完成转换,比直接调用模块函数有效的多。下面的例子都是使用Struct类。

Packing(打包)和Unpacking(解包)

Struct支持将数据packing(打包)成字符串,并能从字符串中逆向unpacking(解压)出数据。

在本例中,格式指定器(specifier)需要一个整型或长整型,一个两个字节的string,和一个浮点数。格式符中的空格用于分隔各个指示器(indicators),在编译格式时会被忽略。

import struct

import binascii

values = (1, 'ab'.encode('utf-8'), 2.7)
s = struct.Struct('I 2s f')
packed_data = s.pack(*values)

print('原始值:', values)
print('格式符:', s.format)
print('占用字节:', s.size)
print('打包结果:', binascii.hexlify(packed_data))

# output
原始值: (1, b'ab', 2.7)
格式符: b'I 2s f'
占用字节: 12
打包结果: b'0100000061620000cdcc2c40'

这个示例将打包的值转换为十六进制字节序列,用binascii.hexlify()方法打印出来。

使用unpack()方法解包。

import struct
import binascii

packed_data = binascii.unhexlify(b'0100000061620000cdcc2c40')

s = struct.Struct('I 2s f')
unpacked_data = s.unpack(packed_data)
print('解包结果:', unpacked_data)

# output
解包结果: (1, b'ab', 2.700000047683716)

将打包的值传给unpack(),基本上返回相同的值(浮点数会有差异)。

字节顺序/大小/对齐

默认情况下,pack是使用本地C库的字节顺序来编码的。格式化字符串的第一个字符可以用来表示填充数据的字节顺序、大小和对齐方式,如下表所描述的:

Character Byte order Size Alignment
@ 本地 本地 本地
= 本地 standard none
< little-endian(小字节序) standard none
> big-endian(大字节序) standard none
! network (= big-endian) standard none

如果格式符中没有设置这些,那么默认将使用 @。

本地字节顺序是指字节顺序是由当前主机系统决定。比如:Intel x86和AMD64(x86-64)使用小字节序; Motorola 68000和 PowerPC G5使用大字节序。ARM和Intel安腾支持切换字节序。可以使用sys.byteorder查看当前系统的字节顺序。

本地大小(Size)和对齐(Alignment)是由c编译器的sizeof表达式确定的。它与本地字节顺序对应。

标准大小由格式符确定,下面会讲各个格式的标准大小。

示例:

import struct
import binascii

values = (1, 'ab'.encode('utf-8'), 2.7)
print('原始值 : ', values)

endianness = [
 ('@', 'native, native'),
 ('=', 'native, standard'),
 ('<', 'little-endian'),
 ('>', 'big-endian'),
 ('!', 'network'),
]

for code, name in endianness:
 s = struct.Struct(code + ' I 2s f')
 packed_data = s.pack(*values)
 print()
 print('格式符 : ', s.format, 'for', name)
 print('占用字节: ', s.size)
 print('打包结果: ', binascii.hexlify(packed_data))
 print('解包结果: ', s.unpack(packed_data))

# output
原始值  :  (1, b'ab', 2.7)

格式符  :  b'@ I 2s f' for native, native
占用字节:  12
打包结果:  b'0100000061620000cdcc2c40'
解包结果:  (1, b'ab', 2.700000047683716)

格式符  :  b'= I 2s f' for native, standard
占用字节:  10
打包结果:  b'010000006162cdcc2c40'
解包结果:  (1, b'ab', 2.700000047683716)

格式符  :  b'< I 2s f' for little-endian
占用字节:  10
打包结果:  b'010000006162cdcc2c40'
解包结果:  (1, b'ab', 2.700000047683716)

格式符  :  b'> I 2s f' for big-endian
占用字节:  10
打包结果:  b'000000016162402ccccd'
解包结果:  (1, b'ab', 2.700000047683716)

格式符  :  b'! I 2s f' for network
占用字节:  10
打包结果:  b'000000016162402ccccd'
解包结果:  (1, b'ab', 2.700000047683716)

格式符

格式符对照表如下:

Format C Type Python type Standard size Notes
x pad byte no value
c char bytes of length 1 1
b signed char integer 1 (1),(3)
B unsigned char integer 1 (3)
? _Bool bool 1 (1)
h short integer 2 (3)
H unsigned short integer 2 (3)
i int integer 4 (3)
I unsigned int integer 4 (3)
l long integer 4 (3)
L unsigned long integer 4 (3)
q long long integer 8 (2), (3)
Q unsigned long long integer 8 (2), (3)
n ssize_t integer (4)
N size_t integer (4)
f float float 4 (5)
d double float 8 (5)
s char[] bytes
p char[] bytes
P void * integer (6)

缓冲区

将数据打包成二进制通常是用在对性能要求很高的场景。

在这类场景中可以通过避免为每个打包结构分配新缓冲区的开销来优化。

pack_into()和unpack_from()方法支持直接写入预先分配的缓冲区。

import array
import binascii
import ctypes
import struct

s = struct.Struct('I 2s f')
values = (1, 'ab'.encode('utf-8'), 2.7)
print('原始值:', values)

print()
print('使用ctypes模块string buffer')

b = ctypes.create_string_buffer(s.size)
print('原始buffer :', binascii.hexlify(b.raw))
s.pack_into(b, 0, *values)
print('打包结果写入 :', binascii.hexlify(b.raw))
print('解包  :', s.unpack_from(b, 0))

print()
print('使用array模块')

a = array.array('b', b'\0' * s.size)
print('原始值 :', binascii.hexlify(a))
s.pack_into(a, 0, *values)
print('打包写入 :', binascii.hexlify(a))
print('解包  :', s.unpack_from(a, 0))

# output
原始值: (1, b'ab', 2.7)

使用ctypes模块string buffer
原始buffer  : b'000000000000000000000000'
打包结果写入 : b'0100000061620000cdcc2c40'
解包        : (1, b'ab', 2.700000047683716)

使用array模块
原始值   : b'000000000000000000000000'
打包写入 : b'0100000061620000cdcc2c40'
解包     : (1, b'ab', 2.700000047683716)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.7 读取 mp3 音频文件生成波形图效果

Python3.7 读取 mp3 音频文件生成波形图效果

测试环境为Windows 10 系统,Python3.7,转换需要提前安装pydub、ffmpeg,安装和加入环境变量配置方法自行解决,至于缺少的包直接 pip install xx 搞...

用Python实现随机森林算法的示例

拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱。bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建...

python如何实现数据的线性拟合

python如何实现数据的线性拟合

实验室老师让给数据画一张线性拟合图。不会matlab,就琢磨着用python。参照了网上的一些文章,查看了帮助文档,成功的写了出来 这里用到了三个库 import numpy as...

Django 前后台的数据传递的方法

Django 从后台往前台传递数据时有多种方法可以实现。 最简单的后台是这样的: from django.shortcuts import render def main_page...

Python存取XML的常见方法实例分析

本文实例讲述了Python存取XML的常见方法。分享给大家供大家参考,具体如下: 目前而言,Python 3.2存取XML有以下四种方法: 1.Expat 2.DOM 3.SAX 4.E...