Python实现k-means算法

yipeiwu_com5年前Python基础

本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下

这也是周志华《机器学习》的习题9.4。

数据集是西瓜数据集4.0,如下

编号,密度,含糖率
1,0.697,0.46
2,0.774,0.376
3,0.634,0.264
4,0.608,0.318
5,0.556,0.215
6,0.403,0.237
7,0.481,0.149
8,0.437,0.211
9,0.666,0.091
10,0.243,0.267
11,0.245,0.057
12,0.343,0.099
13,0.639,0.161
14,0.657,0.198
15,0.36,0.37
16,0.593,0.042
17,0.719,0.103
18,0.359,0.188
19,0.339,0.241
20,0.282,0.257
21,0.784,0.232
22,0.714,0.346
23,0.483,0.312
24,0.478,0.437
25,0.525,0.369
26,0.751,0.489
27,0.532,0.472
28,0.473,0.376
29,0.725,0.445
30,0.446,0.459

算法很简单,就不解释了,代码也不复杂,直接放上来:

# -*- coding: utf-8 -*- 
"""Excercise 9.4"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
import random

data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values

########################################## K-means ####################################### 
k = int(sys.argv[1])
#Randomly choose k samples from data as mean vectors
mean_vectors = random.sample(data,k)

def dist(p1,p2):
  return np.sqrt(sum((p1-p2)*(p1-p2)))
while True:
  print mean_vectors
  clusters = map ((lambda x:[x]), mean_vectors) 
  for sample in data:
    distances = map((lambda m: dist(sample,m)), mean_vectors) 
    min_index = distances.index(min(distances))
    clusters[min_index].append(sample)
  new_mean_vectors = []
  for c,v in zip(clusters,mean_vectors):
    new_mean_vector = sum(c)/len(c)
    #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001
    #then do not updata the mean vector
    if all(np.divide((new_mean_vector-v),v) < np.array([0.0001,0.0001]) ):
      new_mean_vectors.append(v)  
    else:
      new_mean_vectors.append(new_mean_vector)  
  if np.array_equal(mean_vectors,new_mean_vectors):
    break
  else:
    mean_vectors = new_mean_vectors 

#Show the clustering result
total_colors = ['r','y','g','b','c','m','k']
colors = random.sample(total_colors,k)
for cluster,color in zip(clusters,colors):
  density = map(lambda arr:arr[0],cluster)
  sugar_content = map(lambda arr:arr[1],cluster)
  plt.scatter(density,sugar_content,c = color)
plt.show()

运行方式:在命令行输入 python k_means.py 4。其中4就是k。
下面是k分别等于3,4,5的运行结果,因为一开始的均值向量是随机的,所以每次运行结果会有不同。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现查看系统启动项功能示例

本文实例讲述了Python实现查看系统启动项功能。分享给大家供大家参考,具体如下: 一、代码 # -*- coding:utf-8 -*- #! python3 from win32...

Python实现的质因式分解算法示例

本文实例讲述了Python实现的质因式分解算法。分享给大家供大家参考,具体如下: 本来想实现一个其它的基本数学算法问题,但是发现在实现之前必须得先完成分解质因式的算法。 没有去网上寻找什...

Django3.0 异步通信初体验(小结)

Django3.0 异步通信初体验(小结)

此前博主曾经写过一篇博文,介绍了Django3.0的新特性,其中最主要的就是加入对ASGI的支持,实现全双工的异步通信。 2019年12月2日,Django终于正式发布了3.0版本。怀着...

Python3使用Matplotlib 绘制精美的数学函数图形

Python3使用Matplotlib 绘制精美的数学函数图形

一个最最简单的例子: 绘制一个从 0 到 360 度完整的 SIN 函数图形 import numpy as np import matplotlib.pyplot as pt x...

Python3.5内置模块之random模块用法实例分析

本文实例讲述了Python3.5内置模块之random模块用法。分享给大家供大家参考,具体如下: 1、random模块基础的方法 #!/usr/bin/env python # -*...