Python实现k-means算法

yipeiwu_com5年前Python基础

本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下

这也是周志华《机器学习》的习题9.4。

数据集是西瓜数据集4.0,如下

编号,密度,含糖率
1,0.697,0.46
2,0.774,0.376
3,0.634,0.264
4,0.608,0.318
5,0.556,0.215
6,0.403,0.237
7,0.481,0.149
8,0.437,0.211
9,0.666,0.091
10,0.243,0.267
11,0.245,0.057
12,0.343,0.099
13,0.639,0.161
14,0.657,0.198
15,0.36,0.37
16,0.593,0.042
17,0.719,0.103
18,0.359,0.188
19,0.339,0.241
20,0.282,0.257
21,0.784,0.232
22,0.714,0.346
23,0.483,0.312
24,0.478,0.437
25,0.525,0.369
26,0.751,0.489
27,0.532,0.472
28,0.473,0.376
29,0.725,0.445
30,0.446,0.459

算法很简单,就不解释了,代码也不复杂,直接放上来:

# -*- coding: utf-8 -*- 
"""Excercise 9.4"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
import random

data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values

########################################## K-means ####################################### 
k = int(sys.argv[1])
#Randomly choose k samples from data as mean vectors
mean_vectors = random.sample(data,k)

def dist(p1,p2):
  return np.sqrt(sum((p1-p2)*(p1-p2)))
while True:
  print mean_vectors
  clusters = map ((lambda x:[x]), mean_vectors) 
  for sample in data:
    distances = map((lambda m: dist(sample,m)), mean_vectors) 
    min_index = distances.index(min(distances))
    clusters[min_index].append(sample)
  new_mean_vectors = []
  for c,v in zip(clusters,mean_vectors):
    new_mean_vector = sum(c)/len(c)
    #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001
    #then do not updata the mean vector
    if all(np.divide((new_mean_vector-v),v) < np.array([0.0001,0.0001]) ):
      new_mean_vectors.append(v)  
    else:
      new_mean_vectors.append(new_mean_vector)  
  if np.array_equal(mean_vectors,new_mean_vectors):
    break
  else:
    mean_vectors = new_mean_vectors 

#Show the clustering result
total_colors = ['r','y','g','b','c','m','k']
colors = random.sample(total_colors,k)
for cluster,color in zip(clusters,colors):
  density = map(lambda arr:arr[0],cluster)
  sugar_content = map(lambda arr:arr[1],cluster)
  plt.scatter(density,sugar_content,c = color)
plt.show()

运行方式:在命令行输入 python k_means.py 4。其中4就是k。
下面是k分别等于3,4,5的运行结果,因为一开始的均值向量是随机的,所以每次运行结果会有不同。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

__author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy...

Python中多线程的创建及基本调用方法

1. 多线程的作用 简而言之,多线程是并行处理相互独立的子任务,从而大幅度提高整个任务的效率。 2. Python中的多线程相关模块和方法 Python中提供几个用于多线程编程的模块,包...

python中requests使用代理proxies方法介绍

学习网络爬虫难免遇到使用代理的情况,下面介绍一下如何使用requests设置代理: 如果需要使用代理,你可以通过为任意请求方法提供 proxies 参数来配置单个请求: impor...

使用Python脚本将Bing的每日图片作为桌面的教程

微软最近出了个 必应bing 缤纷桌面,使用下来还是不错,可以每天更换Bing首页的北京作为壁纸,但是该软件有个不好的地方是,安装后桌面上会有一个搜索框出现,很是烦人,而且不能关掉。于是...

了解不常见但是实用的Python技巧

了解不常见但是实用的Python技巧

1.交换变量值 2.将一列表中的所有元素拼接成字符串 3.查找list中最高频率的值 4.检查两个单词是否是字谜(组成的字母和对应数量一致) 5.反转字符串 6.反转列表 7...