tensorflow构建BP神经网络的方法

yipeiwu_com5年前Python基础

之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍tensorflow的视频,介绍了关于tensorflow的构建神经网络的方法,特此记录。

tensorflow的构建封装的更加完善,可以任意加入中间层,只要注意好维度即可,不过numpy版的神经网络代码经过适当地改动也可以做到这一点,这里最重要的思想就是层的模型的分离。

import tensorflow as tf  
import numpy as np  
 
def addLayer(inputData,inSize,outSize,activity_function = None): 
  Weights = tf.Variable(tf.random_normal([inSize,outSize]))  
  basis = tf.Variable(tf.zeros([1,outSize])+0.1)  
  weights_plus_b = tf.matmul(inputData,Weights)+basis 
  if activity_function is None: 
    ans = weights_plus_b 
  else: 
    ans = activity_function(weights_plus_b) 
  return ans 
 
 
x_data = np.linspace(-1,1,300)[:,np.newaxis] # 转为列向量 
noise = np.random.normal(0,0.05,x_data.shape) 
y_data = np.square(x_data)+0.5+noise 
 
 
xs = tf.placeholder(tf.float32,[None,1]) # 样本数未知,特征数为1,占位符最后要以字典形式在运行中填入 
ys = tf.placeholder(tf.float32,[None,1]) 
 
l1 = addLayer(xs,1,10,activity_function=tf.nn.relu) # relu是激励函数的一种 
l2 = addLayer(l1,10,1,activity_function=None) 
loss = tf.reduce_mean(tf.reduce_sum(tf.square((ys-l2)),reduction_indices = [1]))#需要向相加索引号,redeuc执行跨纬度操作 
 
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 选择梯度下降法 
 
init = tf.initialize_all_variables() 
sess = tf.Session() 
sess.run(init) 
 
for i in range(10000): 
  sess.run(train,feed_dict={xs:x_data,ys:y_data}) 
  if i%50 == 0: 
    print sess.run(loss,feed_dict={xs:x_data,ys:y_data}) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字符串的修改方法实例

这篇文章主要介绍了Python字符串的修改方法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 我们在修改字符串时 通常遇到报错:...

Python 多进程并发操作中进程池Pool的实例

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的...

Python实现的计数排序算法示例

Python实现的计数排序算法示例

本文实例讲述了Python实现的计数排序算法。分享给大家供大家参考,具体如下: 计数排序是一种非常快捷的稳定性强的排序方法,时间复杂度O(n+k),其中n为要排序的数的个数,k为要排序的...

Python3的unicode编码转换成中文的问题及解决方案

这篇文章主要介绍了Python3的unicode编码转换成中文的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 从别的地...

将Dataframe数据转化为ndarry数据的方法

train_comb 为Dataframe数据: train_comb= train_comb.as_matrix() #得到values的ndarry train_comb =...