tensorflow实现KNN识别MNIST

yipeiwu_com5年前Python基础

KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。

KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。

__author__ = 'freedom' 
import tensorflow as tf 
import numpy as np 
 
def loadMNIST(): 
 from tensorflow.examples.tutorials.mnist import input_data 
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
 return mnist 
def KNN(mnist): 
 train_x,train_y = mnist.train.next_batch(5000) 
 test_x,test_y = mnist.train.next_batch(200) 
 
 xtr = tf.placeholder(tf.float32,[None,784]) 
 xte = tf.placeholder(tf.float32,[784]) 
 distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) 
 
 pred = tf.argmin(distance,0) 
 
 init = tf.initialize_all_variables() 
 
 sess = tf.Session() 
 sess.run(init) 
 
 right = 0 
 for i in range(200): 
  ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) 
  print 'prediction is ',np.argmax(train_y[ansIndex]) 
  print 'true value is ',np.argmax(test_y[i]) 
  if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): 
   right += 1.0 
 accracy = right/200.0 
 print accracy 
 
if __name__ == "__main__": 
 mnist = loadMNIST() 
 KNN(mnist) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中pow()和math.pow()函数用法示例

本文实例讲述了Python中pow()和math.pow()函数用法。分享给大家供大家参考,具体如下: 1. 内置函数pow() >>> help(pow) Hel...

Python学习笔记之Django创建第一个数据库模型的方法

Python学习笔记之Django创建第一个数据库模型的方法

Django里面集成了SQLite的数据库,对于初期研究来说,可以用这个学习。 第一步,创建数据库就涉及到建表等一系列的工作,在此之前,要先在cmd执行一个命令: python ma...

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

本文实例讲述了Python机器学习k-近邻算法。分享给大家供大家参考,具体如下: 工作原理 存在一份训练样本集,并且每个样本都有属于自己的标签,即我们知道每个样本集中所属于的类别。输入没...

Python实现将HTML转成PDF的方法分析

Python实现将HTML转成PDF的方法分析

本文实例讲述了Python实现将HTML转成PDF的方法。分享给大家供大家参考,具体如下: 主要使用的是wkhtmltopdf的Python封装——pdfkit 安装 1. Instal...

Python-openCV读RGB通道图实例

我就废话不多说了,直接上代码吧! #coding=utf-8 '''openCV中最核心的的类是Mat,他是matrix的缩写代表矩阵,该类在头文件opencv2\core\core...