Python cookbook(数据结构与算法)将名称映射到序列元素中的方法

yipeiwu_com6年前Python基础

本文实例讲述了Python将名称映射到序列元素中的方法。分享给大家供大家参考,具体如下:

问题:希望通过名称来访问元素,减少结构中对位置的依赖性

解决方案:使用命名元组collections.namedtuple()。它是一个工厂方法,返回的是python中标准元组类型的子类,提供给它一个类型名称以及相应的字段名称,它就返回一个可实例化的类,为你以定义好的字段名称传入值等。

命名元组的主要作用在于将代码同它所控制的元素位置间进行解耦

>>> from collections import namedtuple
>>> Sub=namedtuple('Subscriber',['addr','joined'])
>>> subscriber=Sub('lucy@example.com','2016-8-7')
>>> subscriber
Subscriber(addr='lucy@example.com', joined='2016-8-7')
>>> subscriber.addr
'lucy@example.com'
>>> subscriber.joined
'2016-8-7'

namedtuple的实例与普通的元组是可互换的,而且支持所有普通元组所支持的操作,例如索引和分解(unpacking).

>>> len(subscriber)
2
>>> addr,joined=subscriber
>>> addr
'lucy@example.com'
>>> joined
'2016-8-7'
>>>

使用普通元组的代码:

def compute_cost(records):
  total = 0.0
  for rec in records:
    total += rec[1] * rec[2]
  return total

通过位置来引用元素使得代码的表达力不够,而且也依赖于记录的具体结构。

下面是使用命名元组的版本:

# example.py
from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price'])
def compute_cost(records):
  total = 0.0
  for rec in records:
    s = Stock(*rec)
    total += s.shares * s.price
  return total
# Some Data
records = [
  ('GOOG', 100, 490.1),
  ('ACME', 100, 123.45),
  ('IBM', 50, 91.15)
]
print(compute_cost(records))

运行结果:

65912.5

补充:

如果要构建涉及字典的大型数据结构,使用namedtuple会更加有效。但是注意,与字典不同的是,namedtuple是不可变的。例如:

>>> s=Stock('ACMS',100,123.45)
>>> s
Stock(name='ACMS', shares=100, price=123.45)
>>> s.shares=75
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  s.shares=75
AttributeError: can't set attribute
>>>

若要修改属性,可使用namedtuple实例的_replace()方法来实现。该方法会创建一个全新的命名元组,并对相应的值做替换;

>>> s=s._replace(shares=75)
>>> s
Stock(name='ACMS', shares=75, price=123.45)
>>>

_replace()方法一个微妙的用途是它可以作为一种简便的方法填充具有可选或缺失字段的命名元组。

步骤:

1、创建一个包含默认值的“原型”元组;

2、使用_replace()方法创建一个新实例,把相应的值替换掉;

from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price','date','time'])
#创建一个包含默认值的“原型”元组
stock_prototype=Stock('',0,0.0,None,None)
#创建一个函数实现将字典转化为Stock类型
def dict_to_stock(s):
  return stock_prototype._replace(**s)
a={'name':'ACMS','shares':100,'price':123.45}
print(dict_to_stock(a))
b={'name':'ACMS','shares':100,'price':123.45,'date':'2016-08-08'}
print(dict_to_stock(b))
c={'name':'ACMS','price':123.45}
print(dict_to_stock(c))

运行结果:

Stock(name='ACMS', shares=100, price=123.45, date=None, time=None)
Stock(name='ACMS', shares=100, price=123.45, date='2016-08-08', time=None)
Stock(name='ACMS', shares=0, price=123.45, date=None, time=None)

注意:如果我们的目标是定义一个高效的数据结构,而且将来会修改各种实例属性,那么不推荐namedtuple!

(代码摘自《Python Cookbook》)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

对python遍历文件夹中的所有jpg文件的实例详解

python发现文件夹下所有的jpg文件,并且安装文件排放的顺序输出 glob模块是最简单的模块之一,内容非常少。用它可以查找符合特定规则的文件路径名。跟使用windows下的文件搜索差...

Python时间序列缺失值的处理方法(日期缺失填充)

前言 因近期进行时间序列分析时遇到了数据预处理中的缺失值处理问题,其中日期缺失和填充在网上没有找到较好较全资料,耗费了我一晚上工作时间,所以下面我对这次时间序列缺失值处理学习做了以下小...

python基于右递归解决八皇后问题的方法

本文实例讲述了python基于右递归解决八皇后问题的方法。分享给大家供大家参考。具体分析如下: 凡是线性回溯都可以归结为右递归的形式,也即是二叉树,因此对于只要求一个解的问题,采用右递归...

Python3里的super()和__class__使用介绍

子类里访问父类的同名属性,而又不想直接引用父类的名字,因为说不定什么时候会去修改它,所以数据还是只保留一份的好。其实呢,还有更好的理由不去直接引用父类的名字,参见 Python's su...

python音频处理用到的操作的示例代码

python音频处理用到的操作的示例代码

前言 本文主要记录python下音频常用的操作,以.wav格式文件为例。其实网上有很多现成的音频工具包,如果仅仅调用,工具包是更方便的。 更多pyton下的操作可以参考: 用python...