Python cookbook(数据结构与算法)将名称映射到序列元素中的方法

yipeiwu_com6年前Python基础

本文实例讲述了Python将名称映射到序列元素中的方法。分享给大家供大家参考,具体如下:

问题:希望通过名称来访问元素,减少结构中对位置的依赖性

解决方案:使用命名元组collections.namedtuple()。它是一个工厂方法,返回的是python中标准元组类型的子类,提供给它一个类型名称以及相应的字段名称,它就返回一个可实例化的类,为你以定义好的字段名称传入值等。

命名元组的主要作用在于将代码同它所控制的元素位置间进行解耦

>>> from collections import namedtuple
>>> Sub=namedtuple('Subscriber',['addr','joined'])
>>> subscriber=Sub('lucy@example.com','2016-8-7')
>>> subscriber
Subscriber(addr='lucy@example.com', joined='2016-8-7')
>>> subscriber.addr
'lucy@example.com'
>>> subscriber.joined
'2016-8-7'

namedtuple的实例与普通的元组是可互换的,而且支持所有普通元组所支持的操作,例如索引和分解(unpacking).

>>> len(subscriber)
2
>>> addr,joined=subscriber
>>> addr
'lucy@example.com'
>>> joined
'2016-8-7'
>>>

使用普通元组的代码:

def compute_cost(records):
  total = 0.0
  for rec in records:
    total += rec[1] * rec[2]
  return total

通过位置来引用元素使得代码的表达力不够,而且也依赖于记录的具体结构。

下面是使用命名元组的版本:

# example.py
from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price'])
def compute_cost(records):
  total = 0.0
  for rec in records:
    s = Stock(*rec)
    total += s.shares * s.price
  return total
# Some Data
records = [
  ('GOOG', 100, 490.1),
  ('ACME', 100, 123.45),
  ('IBM', 50, 91.15)
]
print(compute_cost(records))

运行结果:

65912.5

补充:

如果要构建涉及字典的大型数据结构,使用namedtuple会更加有效。但是注意,与字典不同的是,namedtuple是不可变的。例如:

>>> s=Stock('ACMS',100,123.45)
>>> s
Stock(name='ACMS', shares=100, price=123.45)
>>> s.shares=75
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
  s.shares=75
AttributeError: can't set attribute
>>>

若要修改属性,可使用namedtuple实例的_replace()方法来实现。该方法会创建一个全新的命名元组,并对相应的值做替换;

>>> s=s._replace(shares=75)
>>> s
Stock(name='ACMS', shares=75, price=123.45)
>>>

_replace()方法一个微妙的用途是它可以作为一种简便的方法填充具有可选或缺失字段的命名元组。

步骤:

1、创建一个包含默认值的“原型”元组;

2、使用_replace()方法创建一个新实例,把相应的值替换掉;

from collections import namedtuple
Stock = namedtuple('Stock', ['name', 'shares', 'price','date','time'])
#创建一个包含默认值的“原型”元组
stock_prototype=Stock('',0,0.0,None,None)
#创建一个函数实现将字典转化为Stock类型
def dict_to_stock(s):
  return stock_prototype._replace(**s)
a={'name':'ACMS','shares':100,'price':123.45}
print(dict_to_stock(a))
b={'name':'ACMS','shares':100,'price':123.45,'date':'2016-08-08'}
print(dict_to_stock(b))
c={'name':'ACMS','price':123.45}
print(dict_to_stock(c))

运行结果:

Stock(name='ACMS', shares=100, price=123.45, date=None, time=None)
Stock(name='ACMS', shares=100, price=123.45, date='2016-08-08', time=None)
Stock(name='ACMS', shares=0, price=123.45, date=None, time=None)

注意:如果我们的目标是定义一个高效的数据结构,而且将来会修改各种实例属性,那么不推荐namedtuple!

(代码摘自《Python Cookbook》)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python模块学习 datetime介绍

相比于time模块,datetime模块的接口则更直观、更容易调用。今天就来讲讲datetime模块。 datetime模块定义了两个常量:datetime.MINYEAR和dateti...

python合并已经存在的sheet数据到新sheet的方法

简单的合并,本例是横向合并,纵向合并可以自行调整。 import xlrd import xlwt import shutil from xlutils.copy import...

python读取和保存图片5种方法对比

python读取和保存图片5种方法对比 python中对象之间的赋值是按引用传递的,如果需要拷贝对象,需要用到标准库中的copy模块 方法一:利用 PIL 中的 Image 函数 这个函...

python列表去重的二种方法

复制代码 代码如下:#第一种def delRepeat(liebiao): for x in liebiao:  while liebiao.count(x...

Python的Flask框架及Nginx实现静态文件访问限制功能

Nginx配置 Ngnix,一个高性能的web服务器,毫无疑问它是当下的宠儿。卓越的性能,灵活可扩展,在服务器领域里攻城拔寨,征战天下。 静态文件对于大多数website是不可或缺的一部...