Python实现的自定义多线程多进程类示例

yipeiwu_com6年前Python基础

本文实例讲述了Python实现的自定义多线程多进程类。分享给大家供大家参考,具体如下:

最近经常使用到对大量文件进行操作的程序以前每次写的时候都要在函数中再写一个多线程多进程的函数,做了些重复的工作遇到新的任务时还要重写,因此将多线程与多进程的一些简单功能写成一个类,方便使用。功能简单只为以后方便使用。

使用中发现bug会再进行更新

#!/usr/bin/env python
  # -*- coding: utf-8 -*-
  # @Time  : 2017/5/10 12:47
  # @Author : zhaowen.zhu
  # @Site  :
  # @File  : MultiThread.py
  # @Software: Python Idle
  import threading,time,sys,multiprocessing
  from multiprocessing import Pool
  class MyTMultithread(threading.Thread):
    '''''
    自定义的线程函数,
    功能:使用多线程运行函数,函数的参数只有一个file,并且未实现结果值的返回
    args:
      filelist  函数的参数为列表格式,
      funname  函数的名字为字符串,函数仅有一个参数为file
      delay   每个线程之间的延迟,
      max_threads 线程的最大值
    '''
    def __init__(self,filelist,delay,funname,max_threads = 50):
      threading.Thread.__init__(self)
      self.funname = funname
      self.filelist = filelist[:]
      self.delay = delay
      self.max_threads = max_threads
    def startrun(self):
      def runs():
        time.sleep(self.delay)
        while True:
          try:
            file = self.filelist.pop()
          except IndexError as e:
            break
          else:
            self.funname(file)
      threads = []
      while threads or self.filelist:
        for thread in threads:
          if not thread.is_alive():
            threads.remove(thread)
        while len(threads) < self.max_threads and self.filelist:
          thread = threading.Thread(target = runs)
          thread.setDaemon(True)
          thread.start()
          threads.append(thread)
  class Mymultiprocessing (MyTMultithread):
  '''''
  多进程运行函数,多进程多线程运行函数
  args:
    filelist  函数的参数为列表格式,
    funname  函数的名字为字符串,函数仅有一个参数为file
    delay   每个线程\进程之间的延迟,
    max_threads 最大的线程数
    max_multiprocess 最大的进程数
  '''
    def __init__(self,filelist,delay,funname,max_multiprocess = 1,max_threads = 1):
      self.funname = funname
      self.filelist = filelist[:]
      self.delay = delay
      self.max_threads = max_threads
      self.max_multiprocess = max_multiprocess
      self.num_cpus = multiprocessing.cpu_count()
    def multiprocessingOnly(self):
      '''''
    只使用多进程
      '''
      num_process = min(self.num_cpus,self.max_multiprocess)
      processes = []
      while processes or self.filelist:
        for p in processes:
          if not p.is_alive():
            # print(p.pid,p.name,len(self.filelist))
            processes.remove(p)
        while len(processes) < num_process and self.filelist:
          try:
            file = self.filelist.pop()
          except IndexError as e:
            break
          else:
            p = multiprocessing.Process(target=self.funname,args=(file,))
            p.start()
            processes.append(p)
    def multiprocessingThreads(self):
      num_process = min(self.num_cpus,self.max_multiprocess)
      p = Pool(num_process)
      DATALISTS = []
      tempmod = len(self.filelist) % (num_process)
      CD = int((len(self.filelist) + 1 + tempmod)/ (num_process))
      for i in range(num_process):
        if i == num_process:
          DATALISTS.append(self.filelist[i*CD:-1])
        DATALISTS.append(self.filelist[(i*CD):((i+1)*CD)])
      try:
        processes = []
        for i in range(num_process):
          #print('wait add process:',i+1,time.clock())
          #print(eval(self.funname),DATALISTS[i])
          MultThread = MyTMultithread(DATALISTS[i],self.delay,self.funname,self.max_threads)
          p = multiprocessing.Process(target=MultThread.startrun())
          #print('pid & name:',p.pid,p.name)
          processes.append(p)
        for p in processes:
          print('wait join ')
          p.start()
        print('waite over')
      except Exception as e:
        print('error :',e)
      print ('end process')
  def func1(file):
    print(file)
  if __name__ == '__main__':
    a = list(range(0,97))
    '''''
    测试使用5线程
    '''
    st = time.clock()
    asc = MyTMultithread(a,0,'func1',5)
    asc.startrun()
    end = time.clock()
    print('*'*50)
    print('多线程使用时间:',end-st)
    #测试使用5个进程
    st = time.clock()
    asd = Mymultiprocessing(a,0,'func1',5)
    asd.multiprocessingOnly()
    end = time.clock()
    print('*'*50)
    print('多进程使用时间:',end-st)
    #测试使用5进程10线程
    st = time.clock()
    multiPT = Mymultiprocessing(a,0,'func1',5,10)
    multiPT.multiprocessingThreads()
    end = time.clock()
    print('*'*50)
    print('多进程多线程使用时间:',end-st)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python自带的http模块详解

挺久没写博客了,因为博主开始了今年另一段美好的实习经历,学习加做项目,时间已排满;很感谢今年这两段经历,让我接触了golang和python,学习不同语言,可以跳出之前学习c/c++思维...

Python中数字以及算数运算符的相关使用

Python中数字以及算数运算符的相关使用

Python数字 数字数据类型用于存储数值。 他们是不可改变的数据类型,这意味着改变数字数据类型会分配一个新的对象。 当你指定一个值时,Number对象就会被创建: var1 =...

Python实现列表删除重复元素的三种常用方法分析

本文实例讲述了Python实现列表删除重复元素的三种常用方法。分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素。 listA = ['python','语','...

Python 对输入的数字进行排序的方法

要求,输入一串数字,并以列表的形式打印出来。 number = input('请输入一串数字:') print(number) print(type(number)) 假设输...

Python采集猫眼两万条数据 对《无名之辈》影评进行分析

Python采集猫眼两万条数据 对《无名之辈》影评进行分析

一、说明 本文主要讲述采集猫眼电影用户评论进行分析,相关爬虫采集程序可以爬取多个电影评论。 运行环境:Win10/Python3.5。 分析工具:jieba、wordcloud、pyec...