python实现朴素贝叶斯分类器

yipeiwu_com6年前Python基础

本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量)

以及每个类下每个特征的概率(代码中是pNum变量)。

写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量。

有什么错误有人发现麻烦提出,谢谢。

[python] view plain copy
# -*- coding:utf-8 -*- 
from numpy import * 
from sklearn import datasets 
import numpy as np 
 
class NaiveBayesClassifier(object): 
 
  def __init__(self): 
    self.dataMat = list() 
    self.labelMat = list() 
    self.pLabel = {} 
    self.pNum = {} 
 
  def loadDataSet(self): 
    iris = datasets.load_iris() 
    self.dataMat = iris.data 
    self.labelMat = iris.target 
    labelSet = set(iris.target) 
    labelList = [i for i in labelSet] 
    labelNum = len(labelList) 
    for i in range(labelNum): 
      self.pLabel.setdefault(labelList[i]) 
      self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat)) 
 
  def seperateByClass(self): 
    seperated = {} 
    for i in range(len(self.dataMat)): 
      vector = self.dataMat[i] 
      if self.labelMat[i] not in seperated: 
        seperated[self.labelMat[i]] = [] 
      seperated[self.labelMat[i]].append(vector) 
    return seperated 
 
  # 通过numpy array二维数组来获取每一维每种数的概率 
  def getProbByArray(self, data): 
    prob = {} 
    for i in range(len(data[0])): 
      if i not in prob: 
        prob[i] = {} 
      dataSetList = list(set(data[:, i])) 
      for j in dataSetList: 
        if j not in prob[i]: 
          prob[i][j] = 0 
        prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i])) 
    prob[0] = [1 / float(len(data[:,0]))] # 防止feature不存在的情况 
    return prob 
 
  def train(self): 
    featureNum = len(self.dataMat[0]) 
    seperated = self.seperateByClass() 
    t_pNum = {} # 存储每个类别下每个特征每种情况出现的概率 
    for label, data in seperated.iteritems(): 
      if label not in t_pNum: 
        t_pNum[label] = {} 
      t_pNum[label] = self.getProbByArray(np.array(data)) 
    self.pNum = t_pNum 
 
  def classify(self, data): 
    label = 0 
    pTest = np.ones(3) 
    for i in self.pLabel: 
      for j in self.pNum[i]: 
        if data[j] not in self.pNum[i][j]: 
          pTest[i] *= self.pNum[i][0][0] 
        else: 
          pTest[i] *= self.pNum[i][j][data[j]] 
    pMax = np.max(pTest) 
    ind = np.where(pTest == pMax) 
    return ind[0][0] 
 
  def test(self): 
    self.loadDataSet() 
    self.train() 
    pred = [] 
    right = 0 
    for d in self.dataMat: 
      pred.append(self.classify(d)) 
    for i in range(len(self.labelMat)): 
      if pred[i] == self.labelMat[i]: 
        right += 1 
    print right / float(len(self.labelMat)) 
 
if __name__ == '__main__': 
  NB = NaiveBayesClassifier() 
  NB.test() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python pandas库中DataFrame对行和列的操作实例讲解

用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis,...

对PyQt5的输入对话框使用(QInputDialog)详解

对PyQt5的输入对话框使用(QInputDialog)详解

PyQt5中QInputDialog的使用,Qt的QInputDialog类提供了一种简单方面的对话框来获得用户的单个输入信息,它提供了4种数据类型的输入: 1)字符串型(方法=QInp...

Python读取文件内容的三种常用方式及效率比较

Python读取文件内容的三种常用方式及效率比较

本文实例讲述了Python读取文件内容的三种常用方式。分享给大家供大家参考,具体如下: 本次实验的文件是一个60M的文件,共计392660行内容。 程序一: def one():...

Python中那些 Pythonic的写法详解

前言 Martin(Bob大叔)曾在《代码整洁之道》一书打趣地说:当你的代码在做 Code Review 时,审查者要是愤怒地吼道: “What the fuck is this shi...

python求最大值最小值方法总结

python求最大值最小值方法总结

方法一(常规): 代码: count = int(input('输入数据个数:\n')) a = 1 while a <= count: num = int(input(...