对numpy中数组元素的统一赋值实例

yipeiwu_com5年前Python基础

Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。

先看两个代码片小例子:

例子1:

In [2]: arr =np.empty((8,4))
 
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
 
In [4]: arr[1] = 1
 
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
    [ 1., 1., 1., 1.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

例子2:

In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304,  7.74860419e-304])
 
In [9]: arr1 = 0
 
In [10]: arr1
Out[10]: 0

这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。

例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,

具体方法实现如下:

In [11]: arr1 =np.empty(2)
 
In [12]: arr1
Out[12]: array([0., 0.])
 
In [13]: arr1[:]
Out[13]: array([0., 0.])
 
In [14]: arr1[:] =0
 
In [15]: arr1
Out[15]: array([0., 0.])

看起来似乎蛮简单,但是不做一下稍微深入一点的分析,理解起来确实是还有一点点难度。

以上这篇对numpy中数组元素的统一赋值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python自定义时钟类、定时任务类

这是我使用python写的第一个类(也算是学习面向对象语言以来正式写的第一个解耦的类),记录下改进的过程。 分析需求 最初,因为使用time模块显示日期时,每次都要设置时间字符串的格式,...

Python简单计算文件夹大小的方法

本文实例讲述了Python简单计算文件夹大小的方法。分享给大家供大家参考。具体如下: import os, re """ 查看文件夹下的所有文件及文件夹 join为拼接函数 """...

python使用Image处理图片常用技巧分析

本文实例讲述了python使用Image处理图片常用技巧。分享给大家供大家参考。具体分析如下: 使用python来处理图片是非常方便的,下面提供一小段python处理图片的代码,需要安装...

使用python os模块复制文件到指定文件夹的方法

复制一个文件夹的文件到指定目录下 import os import shutil import time start_time = time.time() # 需要被复制的文件夹...

Python3+Pycharm+PyQt5环境搭建步骤图文详解

Python3+Pycharm+PyQt5环境搭建步骤图文详解

搭建环境: 操作系统:Win10 64bit Python版本:3.7 Pycharm:社区免费版 一、Python3.7安装 下载链接:官网https://www.python.org...