对numpy中数组元素的统一赋值实例

yipeiwu_com6年前Python基础

Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。

先看两个代码片小例子:

例子1:

In [2]: arr =np.empty((8,4))
 
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
 
In [4]: arr[1] = 1
 
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
    [ 1., 1., 1., 1.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

例子2:

In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304,  7.74860419e-304])
 
In [9]: arr1 = 0
 
In [10]: arr1
Out[10]: 0

这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。

例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,

具体方法实现如下:

In [11]: arr1 =np.empty(2)
 
In [12]: arr1
Out[12]: array([0., 0.])
 
In [13]: arr1[:]
Out[13]: array([0., 0.])
 
In [14]: arr1[:] =0
 
In [15]: arr1
Out[15]: array([0., 0.])

看起来似乎蛮简单,但是不做一下稍微深入一点的分析,理解起来确实是还有一点点难度。

以上这篇对numpy中数组元素的统一赋值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python pandas常用函数详解

本文研究的主要是pandas常用函数,具体介绍如下。 1 import语句 import pandas as pd import numpy as np import matplot...

详解python3中zipfile模块用法

详解python3中zipfile模块用法

一、zipfile模块的简述 zipfile是python里用来做zip格式编码的压缩和解压缩的,由于是很常见的zip格式,所以这个模块使用频率也是比较高的, 在这里对zipfile的使...

django实现用户注册实例讲解

创建一个apps包 专门来放子应用 创建users子应用 处理用户事务 追加导包路径 在settings中用 print(sys.path) 查看现有导包路径 sys.path.i...

Python基于QRCode实现生成二维码的方法【下载,安装,调用等】

本文实例讲述了Python基于QRCode实现生成二维码的方法。分享给大家供大家参考,具体如下: QR码是一种矩阵码,或二维空间的条码,1994年由日本Denso-Wave公司发明。QR...

PyTorch CNN实战之MNIST手写数字识别示例

PyTorch CNN实战之MNIST手写数字识别示例

简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNe...