Pandas标记删除重复记录的方法

yipeiwu_com6年前Python基础

Pandas提供了duplicated、Index.duplicated、drop_duplicates函数来标记及删除重复记录

duplicated函数用于标记Series中的值、DataFrame中的记录行是否是重复,重复为True,不重复为False

pandas.DataFrame.duplicated(self, subset=None, keep='first')

pandas.Series.duplicated(self, keep='first')

其中参数解释如下:

subset:用于识别重复的列标签或列标签序列,默认所有列标签

keep=‘frist':除了第一次出现外,其余相同的被标记为重复

keep='last':除了最后一次出现外,其余相同的被标记为重复

keep=False:所有相同的都被标记为重复

import numpy as np
import pandas as pd 
#标记DataFrame重复例子
df = pd.DataFrame({'col1': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], 'col2': [1, 2, 1, 2, 1, 1, 1],
   'col3':['AA','BB','CC','DD','EE','FF','GG']},index=['a', 'a', 'b', 'c', 'b', 'a','c'])
#duplicated(self, subset=None, keep='first')
#根据列名标记
#keep='first'
df.duplicated()#默认所有列,无重复记录
df.duplicated('col1')#第二、四、五行被标记为重复
df.duplicated(['col1','col2'])#第五行被标记为重复
#keep='last'
df.duplicated('col1','last')#第一、三、四行被标记重复
df.duplicated(['col1','col2'],keep='last')#第三行被标记为重复
#keep=False
df.duplicated('col1',False)#Series([True,True,True,True,True,False,False],index=['a','a','b','c','b','a','c'])
df.duplicated(['col1','col2'],keep=False)#在col1和col2列上出现相同的,都被标记为重复
type(df.duplicated(['col1','col2'],keep=False))#pandas.core.series.Series
#根据索引标记
df.index.duplicated()#默认keep='first',第二、五、七行被标记为重复
df.index.duplicated(keep='last')#第一、二、三、四被标记为重复
df[df.index.duplicated()]#获取重复记录行
df[~df.index.duplicated('last')]#获取不重复记录行
#标记Series重复例子
#duplicated(self, keep='first')
s = pd.Series(['one', 'one', 'two', 'two', 'two', 'three', 'four'] ,index= ['a', 'a', 'b', 'c', 'b', 'a','c'],name='sname')
s.duplicated()
s.duplicated('last')
s.duplicated(False)
#根据索引标记
s.index.duplicated()
s.index.duplicated('last')
s.index.duplicated(False)

drop_duplicates函数用于删除Series、DataFrame中重复记录,并返回删除重复后的结果

pandas.DataFrame.drop_duplicates(self, subset=None, keep='first', inplace=False)

pandas.Series.drop_duplicates(self, keep='first', inplace=False)

#删除DataFrame重复记录例子 
#drop_duplicates(self, subset=None, keep='first', inplace=False) 
df.drop_duplicates() 
df.drop_duplicates('col1')#删除了df.duplicated('col1')标记的重复记录 
df.drop_duplicates('col1','last')#删除了df.duplicated('col1','last')标记的重复记录 
df1.drop_duplicates(['col1','col2'])#删除了df.duplicated(['col1','col2'])标记的重复记录 
df.drop_duplicates('col1',keep='last',inplace=True)#inplace=True表示在原DataFrame上执行删除操作 
df.drop_duplicates('col1',keep='last',inplace=False)#inplace=False返回一个副本 
#删除Series重复记录例子 
#drop_duplicates(self, keep='first', inplace=False) 
s.drop_duplicates() 

以上这篇Pandas标记删除重复记录的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django的登录注册系统的示例代码

django的登录注册系统的示例代码

摘要 django框架本身自带有登录注册,也可以自己写登录注册,下面将介绍这这2种方式实登录注册 一、自己写登录注册登出 1.注册regist 注册采用的是form表单,提交到数据库,在...

python防止随意修改类属性的实现方法

如果不想允许随意修改一个类的某个属性,常用的方法是使用property装饰器以及在属性前加下划线。 class V: def __init__(self, x): se...

Pipenv一键搭建python虚拟环境的方法

Pipenv一键搭建python虚拟环境的方法

由于python2和python3在部分语法上不兼容, 导致有人打趣道:"Python2和Python3是两门语言" 对于初学者而言, 如果同时安装了python2和python3, 那...

linux环境下的python安装过程图解(含setuptools)

linux环境下的python安装过程图解(含setuptools)

这里我不想采用诸如ubuntu下的apt-get install方式进行python的安装,而是在linux下采用源码包的方式进行python的安装。 一、下载python源码包 打开u...

利用nohup来开启python文件的方法

python文件可以直接使用命令python xxx.py来启动文件,但是这样会有一个弊端,就是关闭ssh连接,python文件就会自动的进行停止。 所以需要使用利用nohup来开启py...