浅谈Pandas中map, applymap and apply的区别

yipeiwu_com5年前Python基础

1.apply()

当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [117]: frame
Out[117]: 
        b     d     e
Utah  -0.029638 1.081563 1.280300
Ohio  0.647747 0.831136 -1.549481
Texas  0.513416 -0.884417 0.195343
Oregon -0.485454 -0.477388 -0.309548
In [118]: f = lambda x: x.max() - x.min()
In [119]: frame.apply(f)
Out[119]: 
b  1.133201
d  1.965980
e  2.829781
dtype: float64

但是因为大多数的列表统计方程 (比如 sum 和 mean)是DataFrame的函数,所以apply很多时候不是必须的

2.applymap()

如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示

In [120]: format = lambda x: '%.2f' % x
In [121]: frame.applymap(format)
Out[121]: 
      b   d   e
Utah  -0.03  1.08  1.28
Ohio   0.65  0.83 -1.55
Texas  0.51 -0.88  0.20
Oregon -0.49 -0.48 -0.31

3.map()

map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示

In [122]: frame['e'].map(format)
Out[122]: 
Utah    1.28
Ohio   -1.55
Texas   0.20
Oregon  -0.31
Name: e, dtype: object

总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作。

以上这篇浅谈Pandas中map, applymap and apply的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 实现取多维数组第n维的前几位

Python 实现取多维数组第n维的前几位

现在我们有一个shape为(7352, 9, 128, 1)的numpy数组。 想要取出第2维的前三个数据,构成新数组(7352, 3, 128, 1) 我的思想是:将第2维数据转置(t...

解决Python3用PIL的ImageFont输出中文乱码的问题

解决Python3用PIL的ImageFont输出中文乱码的问题

今天在用python3+ImageFont输出中文时,结果显示乱码 # coding:utf-8 from PIL import Image, ImageDraw, ImageFon...

python常用数据重复项处理方法

python常用数据重复项处理方法

在数据的处理过程中,一般都需要进行数据清洗工作,如数据集是否存在重复,是否存在缺失,数据是否具有完整性和一致性,数据中是否存在异常值等.发现诸如此类的问题都需要针对性地处理,下面我们一起...

利用Python命令行传递实例化对象的方法

一、前言 在开发过程中,遇到了这样一个情况:我们需要在脚本中通过 suprocess.call 方法来启动另外一个脚本(脚本 B),当然啦,还得传递一些参数。在这些参数中,有一个需要传...

Python实现字符串逆序输出功能示例

本文实例讲述了Python实现字符串逆序输出功能。分享给大家供大家参考,具体如下: 1、有时候我们可能想让字符串倒序输出,下面给出几种方法 方法一:通过索引的方法 >>&...