对numpy和pandas中数组的合并和拆分详解

yipeiwu_com5年前Python基础

合并

numpy中

numpy中可以通过concatenate,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组。

import numpy as np
import pandas as pd
arr1=np.ones((3,5))
arr1
Out[5]: 
array([[ 1., 1., 1., 1., 1.],
    [ 1., 1., 1., 1., 1.],
    [ 1., 1., 1., 1., 1.]])
arr2=np.random.randn(15).reshape(arr1.shape)
arr2
Out[8]: 
array([[-0.09666833, 1.47064828, -1.94608976, 0.2651279 , -0.32894787],
    [ 1.01187699, 0.39171167, 1.49607091, 0.79216196, 0.33246644],
    [ 1.71266238, 0.86650837, 0.77830394, -0.90519422, 1.55410056]])
np.concatenate([arr1,arr2],axis=0) #在纵轴上合并
Out[9]: 
array([[ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [ 1.    , 1.    , 1.    , 1.    , 1.    ],
    [-0.09666833, 1.47064828, -1.94608976, 0.2651279 , -0.32894787],
    [ 1.01187699, 0.39171167, 1.49607091, 0.79216196, 0.33246644],
    [ 1.71266238, 0.86650837, 0.77830394, -0.90519422, 1.55410056]])
np.concatenate([arr1,arr2],axis=1) #在横轴上合并
Out[10]: 
array([[ 1.    , 1.    , 1.    , ..., -1.94608976,
     0.2651279 , -0.32894787],
    [ 1.    , 1.    , 1.    , ..., 1.49607091,
     0.79216196, 0.33246644],
    [ 1.    , 1.    , 1.    , ..., 0.77830394,
    -0.90519422, 1.55410056]])
np.hstack([arr1,arr2]) # 水平 horizon 
np.vstack([arr1,arr2]) # 垂直 vertical 

pandas中

pandas中通过concat方法实现合并,指定参数axis=0 或者 axis=1,在纵轴和横轴上合并两个数组。与numpy不同,这里的两个dataframe要放在一个列表中,即[frame1,frame2]

from pandas import DataFrame
frame1=DataFrame([[1,2,3],[4,5,6]])
frame2=DataFrame([[7,8,9],[10,11,12]])
pd.concat([frame1,frame2],ignore_index=True) # 合并的数组是一个可迭代的列表。
Out[25]: 
  0  1  2
0  1  2  3
1  4  5  6
0  7  8  9
1 10 11 12
pd.concat([frame1,frame2],axis=1,ignore_index=True)
Out[27]: 
  0 1 2  3  4  5
0 1 2 3  7  8  9
1 4 5 6 10 11 12

拆分

默认情况下,Numpy数组是按行优先顺序创建。在空间方面,这就意味着,对于一个二维数字,每行中的数据项是存放在内在中相邻的位置上的。另一种顺序是列优先。

由于历史原因,行优先和列优先又分别被称为C和Fortran顺序。在Numpy中,可以通过关键字参数order='C' 和order='F' 来实现行优先和列优先。

arr=np.arange(15).reshape(3,-1)
arr
Out[29]: 
array([[ 0, 1, 2, 3, 4],
    [ 5, 6, 7, 8, 9],
    [10, 11, 12, 13, 14]])
arr.ravel('F') #按照列优先,扁平化。
Out[30]: array([ 0, 5, 10, ..., 4, 9, 14])
arr.ravel()
Out[31]: array([ 0, 1, 2, ..., 12, 13, 14])
arr.reshape((5,3),order='F') # Fortran 顺序
Out[32]: 
array([[ 0, 11, 8],
    [ 5, 2, 13],
    [10, 7, 4],
    [ 1, 12, 9],
    [ 6, 3, 14]])
 arr.reshape((5,3),order='C')
 Out[33]: 
array([[ 0, 1, 2],
    [ 3, 4, 5],
    [ 6, 7, 8],
    [ 9, 10, 11],
    [12, 13, 14]])

以上这篇对numpy和pandas中数组的合并和拆分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中使用装饰器来优化尾递归的示例

尾递归简介 尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归。 递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的...

在Django的视图(View)外使用Session的方法

从内部来看,每个session都只是一个普通的Django model(在 django.contrib.sessions.models 中定义)。每个session都由一个随机的32字...

Python 硬币兑换问题

硬币兑换问题: 给定总金额为A的一张纸币,现要兑换成面额分别为a1,a2,....,an的硬币,且希望所得到的硬币个数最少。 # 动态规划思想 dp方程式如下 # dp[0] =...

跨平台python异步回调机制实现和使用方法

1 将下面代码拷贝到一个文件,命名为asyncore.py 复制代码 代码如下:import socketimport selectimport sys def ds_asyncore(...

Python赋值语句后逗号的作用分析

本文实例讲述了Python赋值语句后逗号的作用。分享给大家供大家参考。具体分析如下: IDLE 2.6.2 >>> a = 1 >>> b =...