pandas数据预处理之dataframe的groupby操作方法

yipeiwu_com5年前Python基础

在数据预处理过程中可能会遇到这样的问题,如下图:数据中某一个key有多组数据,如何分别对每个key进行相同的运算?

dataframe里面给出了一个group by的一个操作,对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l (Splitting)按照一些规则将数据分为不同的组;

l (Applying)对于每组数据分别执行一个函数;

l (Combining)将结果组合到一个数据结构中;

使用dataframe实现groupby的用法:

# -*- coding: UTF-8 -*-
import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':1, 'col3':'aa'}, {'col1':'b', 'col2':2, 'col3':'bb'}, {'col1':'c', 'col2':3, 'col3':'cc'}, {'col1':'a', 'col2':44, 'col3':'aa'}])
print df
# 按col1分组并按col2求和
print df.groupby(by='col1').agg({'col2':sum}).reset_index()
# 按col1分组并按col2求最值
print df.groupby(by='col1').agg({'col2':['max', 'min']}).reset_index()
# 按col1 ,col3分组并按col2求和
print df.groupby(by=['col1', 'col3']).agg({'col2':sum}).reset_index()

输出结果为:

 col1 col2 col3 
0  a   1  aa 
1  b   2  bb 
2  c   3  cc 
3  a  44  aa 
 col1 col2 
0  a  45 
1  b   2 
2  c   3 
 col1 col2   
    max min 
0  a  44  1 
1  b  2  2 
2  c  3  3 
 col1 col3 col2 
0  a  aa  45 
1  b  bb   2 
2  c  cc   3 

注意点:

代码中调用了reset_index() 函数, 如果不使用这个函数输出的结果将是:

   col2
col1   
a    45
b    2
c    3
   col2  
   max min
col1     
a   44  1
b    2  2
c    3  3
      col2
col1 col3   
a  aa   45
b  bb    2
c  cc    3

上下两个结果还是有区别的,但是具体区别暂时不太清楚,不过下面的一种输出结果是不能跟使用df['col1']来提取第一列的。至于是什么原因暂时还不清楚,如果您对pandas比较理解或者知道原因,欢迎在评论中留言。

以上这篇pandas数据预处理之dataframe的groupby操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python hashlib加密模块常用方法解析

这篇文章主要介绍了Python hashlib加密模块常用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 主要用于对字符串的加...

Python3.6安装及引入Requests库的实现方法

Python3.6安装及引入Requests库的实现方法

本博客可能没有那么规范,环境之类的配置。只是让你直接开始编程写python。 至于各种配置网络上有多种方法。 本文仅代表我的观点的一种方法。 电脑环境:win10 64位 第一步:下载p...

在cmder下安装ipython以及环境的搭建

在cmder下安装ipython以及环境的搭建

打开cmder 1.移动到D盘 输入命令:D: 2.创建文件夹 λ mkdir myApp 3.创建python自带的虚拟环境 λ python -m venv...

Python random模块(获取随机数)常用方法和使用例子

random.randomrandom.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniformrandom.uniform(...

使用grappelli为django admin后台添加模板

grappelli是github上面star最多的django模板系统 http://django-grappelli.readthedocs.org/en/latest/quickst...