详谈Numpy中数组重塑、合并与拆分方法

yipeiwu_com5年前Python基础

1.数组重塑

1.1一维数组转变成二维数组

通过reshape( )函数即可实现,假设data是numpy.array类型的一维数组array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),现将其转变为2行5列的二维数组,代码如下:

data.reshape((2,5))

作为参数的形状的其中一维可以是-1,它表示该维度的大小由数据本身推断而来,因此上面代码等价于:

data.reshape((2,-1))

1.2二维数组转换成一维数组

将多维数组转换成一维数组的运算通常称为扁平化(flattening)或散开(raveling),因此有两个函数可供选择。执行代码如下:

data.ravel() # 不会产生源数据的副本
data.flatten() # 总是返回数据的副本

关于这两点的区别,理解的不是很透彻。有人懂得话,欢迎评论交流。

2.数组的合并和拆分

2.1数组的合并

numpy提供许多数组合并的方法,这里只介绍最为常用的一种,即concatenate方法,代码如下:

arr1 = np.array([[1,2,3], [4,5,6]])
arr2 = np.array([[7,8,9], [10,11,12]])
data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列

2.2数组的拆分

这里只介绍split函数

np.split(data, [1], axis=0)#data为拆分的数组,[1]为拆分的行号或列号,axis表明按列或者行进行拆分(默认为0,即按行拆分)

以上这篇详谈Numpy中数组重塑、合并与拆分方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django 浅谈根据配置生成SQL语句的问题

想要根据django中的模型和配置生成SQL语句,需要先进行一定的设置: 首先需要在你的app文件夹中进入setting.py文件,里面有一个DATABASES,进行设置数据库的配置信息...

python导出hive数据表的schema实例代码

本文研究的主要问题是python语言导出hive数据表的schema,分享了实现代码,具体如下。 为了避免运营提出无穷无尽的查询需求,我们决定将有查询价值的数据从mysql导入hive中...

ubuntu17.4下为python和python3装上pip的方法

如果刚装上ubuntu会发现自带了python2和python3,但是发现系统没有带pip,所以输入下面的命令分别给他们装上pip: sudo apt-get install pyt...

Python向MySQL批量插数据的实例讲解

Python向MySQL批量插数据的实例讲解

背景:最近测试web项目需要多条测试数据,sql中嫌要写多条,就看了看python如何向MySQL批量插数据(pymysql库) 1、向MySQL批量插数据 import pymys...

python读取大文件越来越慢的原因与解决

python读取大文件越来越慢的原因与解决

背景: 今天同事写代码,用python读取一个四五百兆的文件,然后做一串逻辑上很直观的处理。结果处理了一天还没有出来结果。问题出在哪里呢? 解决: 1. 同事打印了在不同时间点的时间,在...