基于pandas数据样本行列选取的方法

yipeiwu_com5年前Python基础

注:以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ------------------选取数据样本的第一行--------------------
print(food_info.loc[0])
#------------------选取数据样本的3到6行----------------------
print(food_info.loc[3:6])
#------------------head选取数据样本的前几行------------------
print(food_info.head(2))
# ------------------选取数据样本的2,5,10行,两种方法-----------
# print(food_info.loc[[2,5,10]])     #方法一 
two_five_ten = [2,5,10]         #方法二
print(food_info.loc[two_five_ten])
# ------------------选取数据样本的NDB_No列--------------------
# ndb_col = food_info["NDB_No"]     #方法一 
col_name = "NDB_No"           #方法二
ndb_col = food_info[col_name]
print(ndb_col)
# ------------------选取数据样本的多列-------------------
# zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print(zinc_copper)
# ---------------------综合小例子----------------------------
col_names = food_info.columns.tolist()   #把所有的行转化成list
print(col_names)
gram_columns = []
for c in col_names:            #遍历col_names,找出所有以(g)结尾的位置
  if c.endswith("(g)"):
    gram_columns.append(c)
print(gram_columns)
gram_df = food_info[gram_columns]     #把所有以(g)结尾的列存放到gram_df
print(gram_df.head(3)) 

以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用锁访问共享变量实例解析

本文研究的主要是python使用锁访问共享变量,具体介绍和实现如下。 python 做多线程编程时,多个线程若同时访问某个变量,可能会对变量数据造成破坏,pyhon中的threading...

浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆。下面举例对这些切片方法进行说明。 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [r...

python防止随意修改类属性的实现方法

如果不想允许随意修改一个类的某个属性,常用的方法是使用property装饰器以及在属性前加下划线。 class V: def __init__(self, x): se...

python使用Apriori算法进行关联性解析

从大规模数据集中寻找物品间的隐含关系被称作关联分析或关联规则学习。过程分为两步:1.提取频繁项集。2.从频繁项集中抽取出关联规则。 频繁项集是指经常出现在一块的物品的集合。 关联规...

python dict remove数组删除(del,pop)

比如代码 binfo = {'name':'jay','age':20,'python':'haha'} print binfo.pop('name')#pop方法删除键,并且返回键对应...