基于pandas数据样本行列选取的方法

yipeiwu_com6年前Python基础

注:以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ------------------选取数据样本的第一行--------------------
print(food_info.loc[0])
#------------------选取数据样本的3到6行----------------------
print(food_info.loc[3:6])
#------------------head选取数据样本的前几行------------------
print(food_info.head(2))
# ------------------选取数据样本的2,5,10行,两种方法-----------
# print(food_info.loc[[2,5,10]])     #方法一 
two_five_ten = [2,5,10]         #方法二
print(food_info.loc[two_five_ten])
# ------------------选取数据样本的NDB_No列--------------------
# ndb_col = food_info["NDB_No"]     #方法一 
col_name = "NDB_No"           #方法二
ndb_col = food_info[col_name]
print(ndb_col)
# ------------------选取数据样本的多列-------------------
# zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print(zinc_copper)
# ---------------------综合小例子----------------------------
col_names = food_info.columns.tolist()   #把所有的行转化成list
print(col_names)
gram_columns = []
for c in col_names:            #遍历col_names,找出所有以(g)结尾的位置
  if c.endswith("(g)"):
    gram_columns.append(c)
print(gram_columns)
gram_df = food_info[gram_columns]     #把所有以(g)结尾的列存放到gram_df
print(gram_df.head(3)) 

以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python查找第k小元素代码分享

复制代码 代码如下:# -*- coding: utf-8 -*- from random import randintfrom math import ceil, floor def...

Django将默认的SQLite更换为MySQL的实现

1、注释默认的SQLite3配置: blogproject/settings.py ''' DATABASES = { 'default': { 'ENGINE': 'djan...

python学习笔记:字典的使用示例详解

经典字典使用函数dict:通过其他映射(比如其他字典)或者(键,值)这样的序列对建立字典。当然dict成为函数不是十分确切,它本质是一种类型。如同list。 复制代码 代码如下:item...

浅谈Python实现Apriori算法介绍

浅谈Python实现Apriori算法介绍

导读: 随着大数据概念的火热,啤酒与尿布的故事广为人知。我们如何发现买啤酒的人往往也会买尿布这一规律?数据挖掘中的用于挖掘频繁项集和关联规则的Apriori算法可以告诉我们。本文首先对A...

django使用django-apscheduler 实现定时任务的例子

下载: pip install apscheduler pip install django-apscheduler 将 django-apscheduler 加到项目中settings...