基于pandas数据样本行列选取的方法

yipeiwu_com5年前Python基础

注:以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ------------------选取数据样本的第一行--------------------
print(food_info.loc[0])
#------------------选取数据样本的3到6行----------------------
print(food_info.loc[3:6])
#------------------head选取数据样本的前几行------------------
print(food_info.head(2))
# ------------------选取数据样本的2,5,10行,两种方法-----------
# print(food_info.loc[[2,5,10]])     #方法一 
two_five_ten = [2,5,10]         #方法二
print(food_info.loc[two_five_ten])
# ------------------选取数据样本的NDB_No列--------------------
# ndb_col = food_info["NDB_No"]     #方法一 
col_name = "NDB_No"           #方法二
ndb_col = food_info[col_name]
print(ndb_col)
# ------------------选取数据样本的多列-------------------
# zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print(zinc_copper)
# ---------------------综合小例子----------------------------
col_names = food_info.columns.tolist()   #把所有的行转化成list
print(col_names)
gram_columns = []
for c in col_names:            #遍历col_names,找出所有以(g)结尾的位置
  if c.endswith("(g)"):
    gram_columns.append(c)
print(gram_columns)
gram_df = food_info[gram_columns]     #把所有以(g)结尾的列存放到gram_df
print(gram_df.head(3)) 

以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现梯度下降算法

python实现梯度下降算法

梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法。当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。 本文主要以线性回归算法损失函数...

Python3常用内置方法代码实例

这篇文章主要介绍了Python3常用内置方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 max()/min() 传...

python实现自主查询实时天气

python实现自主查询实时天气

本文实例为大家分享了python实现自主查询实时天气的具体代码,供大家参考,具体内容如下 用到了urllib2 json  很简单的一个应用 如下 获取城市编号 #cod...

python 读取txt,json和hdf5文件的实例

一.python读取txt文件 最简单的open函数: # -*- coding: utf-8 -*- with open("test.txt","r",encoding="gbk"...

python3实现名片管理系统

基于python3基础课程,编写名片管理系统训练,有利于熟悉python基础代码的使用。 cards_main.py #! /usr/bin/python3 import card...