pandas 使用apply同时处理两列数据的方法

yipeiwu_com5年前Python基础

多的不说,看了代码就懂了!

df = pd.DataFrame ({'a' : np.random.randn(6),
    'b' : ['foo', 'bar'] * 3,
    'c' : np.random.randn(6)})
def my_test(a, b):
 return a + b
df['Value'] = df.apply(lambda row: my_test(row['a'], row['c']), axis=1)
print df

以上这篇pandas 使用apply同时处理两列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy中的ndarray方法和属性详解

NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当...

Numpy掩码式数组详解

数据很大形况下是凌乱的,并且含有空白的或者无法处理的字符,掩码式数组可以很好的忽略残缺的或者是无效的数据点。掩码式数组由一个正常数组与一个布尔式数组组成,若布尔数组中为Ture,则表示正...

numpy中的delete删除数组整行和整列的实例

numpy中的delete删除数组整行和整列的实例

numpy的delete是可以删除数组的整行和整列的,下面简单介绍和举例说明delete函数用法: numpy.delete(arr, obj, axis=None) 参数: ar...

浅谈django开发者模式中的autoreload是如何实现的

在开发django应用的过程中,使用开发者模式启动服务是特别方便的一件事,只需要 python manage.py runserver 就可以运行服务,并且提供了非常人性化的autore...

Python实现简单的列表冒泡排序和反转列表操作示例

本文实例讲述了Python实现简单的列表冒泡排序和反转列表操作。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python2 a=[3,4,6...