python 读文件,然后转化为矩阵的实例

yipeiwu_com6年前Python基础

代码流程:

1. 从文件中读入数据。

2. 将数据转化成矩阵的形式。

3. 对于矩阵进行处理。

具体的python代码如下:

- 文件路径需要设置正确。

- 字符串处理。

- 字符串数组到 整型数组的转化。( nums = [int(x) for x in nums ])

- 矩阵的构造。(matrix = np.array(nums))

- numpy模块在矩阵处理上很有优势。

列表内容

# -*- coding: utf-8 -*-
import numpy as np
def readFile(path):
 # 打开文件(注意路径)
 f = open(path)
 # 逐行进行处理
 first_ele = True
 for data in f.readlines():
  ## 去掉每行的换行符,"\n"
  data = data.strip('\n')
  ## 按照 空格进行分割。
  nums = data.split(" ")
  ## 添加到 matrix 中。
  if first_ele:
   ### 将字符串转化为整型数据
   nums = [int(x) for x in nums ]
   ### 加入到 matrix 中 。
   matrix = np.array(nums)
   first_ele = False
  else:
   nums = [int(x) for x in nums]
   matrix = np.c_[matrix,nums]
 dealMatrix(matrix)
 f.close()
def dealMatrix(matrix):
 ## 一些基本的处理。
 print "transpose the matrix"
 matrix = matrix.transpose()
 print matrix
 print "matrix trace "
 print np.trace(matrix)
# test.
if __name__ == '__main__':
 readFile("matrix")

其中matrix文件中的内容如下:

0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1
1
2
3
4

python 构造m* n的矩阵

- 通过列表的方式(数组)进行生成矩阵。

- 该矩阵不适用于稀疏矩阵。(稀疏矩阵不会这样子进行构造)

- 注意:如果数据量特别大的时候,这种方法相当于将矩阵中的东西全部加载到内存中,如果行列达到10000+,最好考虑使用稀疏矩阵。(易出现 MemoryError)

- 稀疏矩阵的运算也应该考虑。

相关代码:

def fixed_matrix(row,col):
 return [[0 for i in range(col)] for j in range(row)]

以上这篇python 读文件,然后转化为矩阵的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python批量创建迅雷任务及创建多个文件

其实不是真的创建了批量任务,而是用python创建一个文本文件,每行一个要下载的链接,然后打开迅雷,复制文本文件的内容,迅雷监测到剪切板变化,弹出下载全部链接的对话框~~ 实际情况是这样...

命令行运行Python脚本时传入参数的三种方式详解

如果在运行python脚本时需要传入一些参数,例如gpus与batch_size,可以使用如下三种方式。 python script.py 0,1,2 10 python scrip...

python操作ie登陆土豆网的方法

本文实例讲述了python操作ie登陆土豆网的方法。分享给大家供大家参考。具体如下: 这里利用ie操作登陆土豆网,很简单,仅做一下记录,以备后用。 # -*- coding: utf...

python实现最长公共子序列

python实现最长公共子序列

最长公共子序列python实现,最长公共子序列是动态规划基本题目,下面按照动态规划基本步骤解出来。 1.找出最优解的性质,并刻划其结构特征 序列a共有m个元素,序列b共有n个元素,如果a...

python 处理string到hex脚本的方法

python 处理string到hex脚本的方法

实现目标:把文件1中数据如:B4A6C0ED69 处理后放入文件2:0XB4, 0XA6, 0XC0, 0XED, 0X69 V1.0代码如下(后续继续优化): #!/usr/bin...