浅谈tensorflow1.0 池化层(pooling)和全连接层(dense)

yipeiwu_com6年前Python基础

池化层定义在tensorflow/python/layers/pooling.py.

有最大值池化和均值池化。

1、tf.layers.max_pooling2d

max_pooling2d(
  inputs,
  pool_size,
  strides,
  padding='valid',
  data_format='channels_last',
  name=None
)

  1. inputs: 进行池化的数据。
  2. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]. 如果长宽相等,也可以直接设置为一个数,如pool_size=3.
  3. strides: 池化的滑动步长。可以设置为[1,1]这样的两个整数. 也可以直接设置为一个数,如strides=2
  4. padding: 边缘填充,'same' 和'valid‘选其一。默认为valid
  5. data_format: 输入数据格式,默认为channels_last ,即 (batch, height, width, channels),也可以设置为channels_first 对应 (batch, channels, height, width).
  6. name: 层的名字。

例:

pool1=tf.layers.max_pooling2d(inputs=x, pool_size=[2, 2], strides=2)

一般是放在卷积层之后,如:

conv=tf.layers.conv2d(
   inputs=x,
   filters=32,
   kernel_size=[5, 5],
   padding="same",
   activation=tf.nn.relu)
pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)

2.tf.layers.average_pooling2d

average_pooling2d(
  inputs,
  pool_size,
  strides,
  padding='valid',
  data_format='channels_last',
  name=None
)

参数和前面的最大值池化一样。

全连接dense层定义在 tensorflow/python/layers/core.py.

3、tf.layers.dense

dense(
  inputs,
  units,
  activation=None,
  use_bias=True,
  kernel_initializer=None,
  bias_initializer=tf.zeros_initializer(),
  kernel_regularizer=None,
  bias_regularizer=None,
  activity_regularizer=None,
  trainable=True,
  name=None,
  reuse=None
)
  1. inputs: 输入数据,2维tensor.
  2. units: 该层的神经单元结点数。
  3. activation: 激活函数.
  4. use_bias: Boolean型,是否使用偏置项.
  5. kernel_initializer: 卷积核的初始化器.
  6. bias_initializer: 偏置项的初始化器,默认初始化为0.
  7. kernel_regularizer: 卷积核化的正则化,可选.
  8. bias_regularizer: 偏置项的正则化,可选.
  9. activity_regularizer: 输出的正则化函数.
  10. trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  11. name: 层的名字.
  12. reuse: Boolean型, 是否重复使用参数.

全连接层执行操作 outputs = activation(inputs.kernel + bias)

如果执行结果不想进行激活操作,则设置activation=None。

例:

#全连接层
dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)
dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)
logits= tf.layers.dense(inputs=dense2, units=10, activation=None)

也可以对全连接层的参数进行正则化约束:

复制代码 代码如下:
dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python设计模式之观察者模式简单示例

Python设计模式之观察者模式简单示例

本文实例讲述了Python设计模式之观察者模式。分享给大家供大家参考,具体如下: 观察者模式是一个软件设计模式,一个主题对象包涵一系列依赖他的观察者,自动通知观察者的主题对象的改变,通常...

python selenium 对浏览器标签页进行关闭和切换的方法

1.关闭浏览器全部标签页 driver.quit() 2.关闭当前标签页(从标签页A打开新的标签页B,关闭标签页A) driver.close() 3.关闭当前标签页(从标签...

使用python和Django完成博客数据库的迁移方法

使用python和Django完成博客数据库的迁移方法

上一讲完成了基本博客的配置和项目工程的生成。这次开始将博客一些基本的操作主要是数据库方面学习。 1.设计博客数据库表结构 博客最主要的功能就是展示我们写的文章,它需要从某个地方获取博客文...

Python使用random.shuffle()打乱列表顺序的方法

Python的random.shuffle()函数可以用来乱序序列,它是在序列的本身打乱,而不是新生成一个序列。 示例: from random import shuffle x =...

Python OpenCV实现图片上输出中文

Python OpenCV实现图片上输出中文

OpenCV中在图片上输出中文一般需要借助FreeType库实现。FreeType库是一个完全免费(开源)的、高质量的且可移植的字体引擎,它提供统一的接口来访问多种字体格式文件。但使用F...