Python多线程中阻塞(join)与锁(Lock)使用误区解析

yipeiwu_com5年前Python基础

关于阻塞主线程

join的错误用法

Thread.join() 作用为阻塞主线程,即在子线程未返回的时候,主线程等待其返回然后再继续执行.

join不能与start在循环里连用
以下为错误代码,代码创建了5个线程,然后用一个循环激活线程,激活之后令其阻塞主线程.

threads = [Thread() for i in range(5)]
for thread in threads:
 thread.start()
 thread.join()

执行过程:

1. 第一次循环中,主线程通过start函数激活线程1,线程1进行计算.
2. 由于start函数不阻塞主线程,在线程1进行运算的同时,主线程向下执行join函数.
3. 执行join之后,主线程被线程1阻塞,在线程1返回结果之前,主线程无法执行下一轮循环.
4. 线程1计算完成之后,解除对主线程的阻塞.
5. 主线程进入下一轮循环,激活线程2并被其阻塞…

如此往复,可以看出,本来应该并发的五个线程,在这里变成了顺序队列,效率和单线程无异.

join的正确用法

使用两个循环分别处理startjoin函数.即可实现并发.

threads = [Thread() for i in range(5)]
for thread in threads:
 thread.start()
for thread in threads:
 thread.join()

time.sleep代替join进行调试

之前在一些项目里看到过这样的代码,使用time.sleep代替join手动阻塞主线程.
在所有子线程返回之前,主线程陷入无线循环而不能退出.

for thread in threads:
 thread.start()
while 1:
 if thread_num == 0:
 break
 time.sleep(0.01)

关于线程锁(threading.Lock)

单核CPU+PIL是否还需要锁?

非原子操作 count = count + 1 理论上是线程不安全的.
使用3个线程同时执行上述操作改变全局变量count的值,并查看程序执行结果.
如果结果正确,则表示未出现线程冲突.

使用以下代码测试

# -*- coding: utf-8 -*-

import threading
import time
count = 0

class Counter(threading.Thread):
 def __init__(self, name):
 self.thread_name = name
 super(Counter, self).__init__(name=name)

 def run(self):
 global count
 for i in xrange(100000):
  count = count + 1


counters = [Counter('thread:%s' % i) for i in range(5)]
for counter in counters:
 counter.start()

time.sleep(5)
print 'count=%s' % count

运行结果:

count=275552

事实上每次运行结果都不相同且不正确,这证明单核CPU+PIL仍无法保证线程安全,需要加锁.

加锁后的正确代码:

# -*- coding: utf-8 -*-

import threading
import time

count = 0
lock = threading.Lock()


class Counter(threading.Thread):
 def __init__(self, name):
 self.thread_name = name
 self.lock = threading.Lock()
 super(Counter, self).__init__(name=name)

 def run(self):
 global count
 global lock
 for i in xrange(100000):
  lock.acquire()
  count = count + 1
  lock.release()


counters = [Counter('thread:%s' % i) for i in range(5)]

for counter in counters:
 counter.start()

time.sleep(5)
print 'count=%s' % count

结果:

count=500000

注意锁的全局性

这是一个简单的Python语法问题,但在逻辑复杂时有可能被忽略.
要保证锁对于多个子线程来说是共用的,即不要在Thread的子类内部创建锁.

以下为错误代码

# -*- coding: utf-8 -*-

import threading
import time

count = 0
# lock = threading.Lock() # 正确的声明位置

class Counter(threading.Thread):
 def __init__(self, name):
 self.thread_name = name
 self.lock = threading.Lock() # 错误的声明位置
 super(Counter, self).__init__(name=name)

 def run(self):
 global count
 for i in xrange(100000):
  self.lock.acquire()
  count = count + 1
  self.lock.release()


counters = [Counter('thread:%s' % i) for i in range(5)]

for counter in counters:
 print counter.thread_name
 counter.start()

time.sleep(5)
print 'count=%s' % count

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python数据分析中Groupby用法之通过字典或Series进行分组的实例

在数据分析中有时候需要自己定义分组规则 这里简单介绍一下用一个字典实现分组 people=DataFrame( np.random.randn(5,5), columns=...

Python使用numpy实现BP神经网络

本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x。BP神经网络的具体原理此...

python redis连接 有序集合去重的代码

python redis连接 有序集合去重的代码如下所述: # -*- coding: utf-8 -*- import redis from constant import re...

python的正则表达式re模块的常用方法

1.re的简介 使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息。python 会将正则表达式转化为字节...

pandas按若干个列的组合条件筛选数据的方法

pandas按若干个列的组合条件筛选数据的方法

还是用图说话 A文件: 比如,我想筛选出“设计井别”、“投产井别”、“目前井别”三列数据都为11的数据,结果如下: 当然,这里的筛选条件可以根据用户需要自由调整,代码如下: #...